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Attribute sampling

This paper revisits a fundamental learning problem:

• agent considers the adoption of an object of uncertain value

• object characterized by a mass of correlated attributes

• value for the object depends on the sum of attribute realizations

• agent might have some benchmark knowledge

• limited sampling opportunities for additional attributes
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Attribute sampling

This paper revisits a fundamental learning problem:

• agent considers the adoption of an object of uncertain value

• object characterized by a mass of correlated attributes

• value for the object depends on the sum of attribute realizations

• agent might have some benchmark knowledge

• limited sampling opportunities for additional attributes

expected value = ω1 · x1 + ω2 · E [x2 | x1, x3] + ω3 · x3
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Attribute sampling

This paper revisits a fundamental learning problem:

• agent considers the adoption of an object of uncertain value

• object characterized by a mass of correlated attributes

• value for the object depends on the sum of attribute realizations

• agent might have some benchmark knowledge

• limited sampling opportunities for additional attributes

Examples:

▶ appraising a multi-attribute product before purchase
▶ evaluating skill bundle of a potential employee
▶ gauging the spatial impact of a social program
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Attribute sampling

Selective exploration of attributes has a long tradition in economics.

Attribute-based demand: Lancaster (1966), Keeney and Raiffa (1976)

Independent attributes: Neeman (1995), Klabjan, Olszewski, and
Wolinsky (2014), Sanjurjo (2017)

Our attribute sampling problem significantly differs from the standard:

▶ search problem
▶ multi-armed bandit problem

This paper:

1. Optimal attribute sampling in the absence of agency conflict

2. Distortions in sampling in the presence of agency conflict

• separate authorities over sampling and adoption
• different weighting of attributes and/or outside option
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Site selection in program evaluation

Selection of pilot sites as attribute sampling

• N target sites (N large)

• sites ordered according to observable
characteristics

• program outcomes differ across sites

• learning through small-scale pilot
studies (k << N)

• program scale-up desirable if average
outcome is high

• which sites should be selected for
pilot testing?

income

program outcome

poorest richest

A B C D
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Site selection in program evaluation

Empirical Concern:

Low generalizability of pilot findings in impact evaluations

• Allcott (2015), Bold et al. (2018), Vivalt (2020)

• game between a utilitarian researcher and a partisan evaluator
• sufficient statistic for generalizability
• reasonable benchmark for generalizability

• we show the optimal pilot site of low generalizability for both the
researcher and the evaluator
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Gaussian framework

We model the attribute mapping as a realization of a Gaussian process

• flexible modeling of correlated attributes

• learning over the space of Gaussian sample paths

• covariance function as a similarity metric over pairs of attributes
▶ how much can be extrapolated from one attribute to another

The analysis hinges on two key assumptions:

1. Jointly Gaussian attributes
2. Rich attribute space
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Gaussian framework

Figure 1: Sample paths of a Gaussian process
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Preview of results

1. In the single-player benchmark, the optimal sample

• maximizes a single informativeness statistic

▶ sample balances generalizability to out-of-sample attributes with
non-redundancy within sample

▶ maximally central in a corresponding attribute graph

• is independent of expected value of attributes/project

• is independent of timing format (sequential vs. simultaneous)
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Preview of results

2. When agent samples and principal adopts:
• the value of a sample hinges on two informativeness statistics, one
for each player

• prior agreement between players brings
• suppression of informativeness for both players
• controversial sampling

• distortions in sample size, content, and delay
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Model



Players and timing

• Two players: principal (P) and agent (A)

• Players jointly evaluate a multi-attribute project of unknown
quality

• Separate authorities:
t = 1: A samples attributes
t = 2: P decides whether to adopt

• Sample observations revealed publicly
• symmetrically informed players
• no contracting

• Formats of sampling contrasted
(i) simultaneous
(ii) sequential
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Attributes

• Attributes a ∈ A := [0, 1]
• Unknown mapping f : A → R determines attribute realizations
• f drawn from the space of sample paths of a Gaussian process

f ∼ GP (µ, σ)

where prior mean µ and symmetric positive definite covariance σ:

µ : A → R

σ : A×A → R

• (µ, σ) perfectly known by both players
• σ(a,a′) similarity metric among attribute pair (a,a′)

Assumption (Continuity of sample paths)
Almost surely any realization of f is continuous.
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Attributes

Brownian motion is a Gaussian process.

Figure 2: Brownian motion: µ = 2a, σ(a, a′) = min(a, a′)
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Sampling

Finite distribution: For any k-sample of attributes a = (a1, . . . ,ak)

f(a) :=

f(a1)...
f(ak)

 ∼ N


µ(a1)...
µ(ak)


︸ ︷︷ ︸

µ(a)

,

σ(a1,a1) . . . σ(a1,ak)
... . . . ...

σ(ak,a1) . . . σ(ak,ak)


︸ ︷︷ ︸

Σ(a)


If a drawn, f(a) observed perfectly by both players

Ak is the set of non-redundant samples of size at most k:

Ak := {(a1, . . . ,an) ∈ An, ∀n ≤ k,n ∈ N | Σ((a1, . . . ,an)) is non-singular}
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Payoffs

Cost of sampling exogenous (finite) sampling capacity k ∈ N

c(n) =
{
0 if n ≤ k
+∞ otherwise

Rejection payoff heterogenous payoffs from status quo (rA, rP) ∈ R2

Adoption payoff player i obtains ex-post payoff

vi =
∫
A
f(a)ωi(a)da

where ωi : A → R is a Lebesgue-integrable attribute weight function
for player i
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c(n) =
{
0 if n ≤ k
+∞ otherwise

Rejection payoff heterogenous payoffs from status quo (rA, rP) ∈ R2

Adoption payoff player i obtains ex-post payoff

vi =
∫
A
f(a)ωi(a)da

where ωi : A → R is a Lebesgue-integrable attribute weight function
for player i

Without loss, for both players∫
A
ωi(a)da = 1.

In the single-player benchmark we normalize ω(·) ≥ 0.
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Payoffs

Cost of sampling exogenous (finite) sampling capacity k ∈ N

c(n) =
{
0 if n ≤ k
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Rejection payoff heterogenous payoffs from status quo (rA, rP) ∈ R2

Adoption payoff player i obtains ex-post payoff

vi =
∫
A
f(a)ωi(a)da

where ωi : A → R is a Lebesgue-integrable attribute weight function
for player i

Player i’s prior value from the project

ν i0 := E[vi] =
∫
A
µ(a)ωi(a)da
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Payoffs

Cost of sampling exogenous (finite) sampling capacity k ∈ N

c(n) =
{
0 if n ≤ k
+∞ otherwise

Rejection payoff heterogenous payoffs from status quo (rA, rP) ∈ R2

Adoption payoff player i obtains ex-post payoff

vi =
∫
A
f(a)ωi(a)da

where ωi : A → R is a Lebesgue-integrable attribute weight function
for player i

vi ∼ N
(
ν i0,

∫
A

∫
A
σ(a,a′)ω(a)ω(a′)dada′︸ ︷︷ ︸

aggregate uncertainty about the project

)
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Payoffs

Figure 3: vi depicted in yellow and ν i0 in red if ωi(a) = 1 for all a ∈ [0, 1]
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Payoffs

Cost of sampling exogenous (finite) sampling capacity k ∈ N

c(n) =
{
0 if n ≤ k
+∞ otherwise

Rejection payoff heterogenous payoffs from status quo (rA, rP) ∈ R2

Adoption payoff player i obtains ex-post payoff

vi =
∫
A
f(a)ωi(a)da

where ωi : A → R is a Lebesgue-integrable attribute weight function
for player i

Sources of conflict:

1. relative importance of attributes (ωP, ωA)
2. threshold on adoption (rA, rP)
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Prior disagreement

Definition
Players are in prior disagreement about the project’s initial worth if(
vP0 − rP

)
and

(
vA0 − rA

)
have opposite signs.

They are in prior agreement otherwise.

• In the absence of any sampling, prior disagreement implies that
players favor different adoption decision.

16



Prior disagreement

Definition
Players are in prior disagreement about the project’s initial worth if(
vP0 − rP

)
and

(
vA0 − rA

)
have opposite signs.

They are in prior agreement otherwise.

• In the absence of any sampling, prior disagreement implies that
players favor different adoption decision.

16



Underdetermination by data

Assumption
Fix k ∈ N. For any a ∈ Ak, any realization f(a), and at least some player,

Var [vi | a, f(a)] > 0.

17



Out-of-sample extrapolation

Lemma (Extrapolation)
Fix a sample a = (a1, . . . ,ak) with respective realizations f(a) and
attribute â ∈ A. The expected realization f(â) is given by

E[f(â) | a, f(a)] = µ(â) +
k∑
j=1

τj(â; a)
(
f(aj)− µ(aj)

)
,

where τj(â; a), its sensitivity to observation f(aj), is the (1, j)th entry of
matrix (

σ(a1, â) . . . σ(ak, â)
)
Σ−1(a).

• predicted realization for any attribute is a linear combination of
sample realizations

• τ(â;aj) ≡ extent to which f(aj) contributes to the guess for f(â)

• exact shape of extrapolation depends on covariance σ
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attribute â ∈ A. The expected realization f(â) is given by
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Examples: µ(a) = 0, a = (1/5, 2/5, 3/5, 4/5)

Let’s see a few examples of extrapolation from a sample.

Figure 4: Brownian: σ(a, a′) = min(a, a′)
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Examples: µ(a) = 0, a = (1/5, 2/5, 3/5, 4/5)

Let’s see a few examples of extrapolation from a sample.

Figure 4: Ornstein-Uhlenbeck: σ(a, a′) = e−|a−a′|/ℓ, ℓ = 1/20
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Examples: µ(a) = 0, a = (1/5, 2/5, 3/5, 4/5)

Let’s see a few examples of extrapolation from a sample.

Figure 4: Squared exponential: σ(a, a′) = e−(a−a′)2/ℓ2 , ℓ = 1/20
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Examples: µ(a) = 0, a = (1/5, 2/5, 3/5, 4/5)

Let’s see a few examples of extrapolation from a sample.

Figure 4: Polynomial: σ(a, a′) = (1+ aa′)10
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Posterior value

Lemma

Fix sample a = (a1, . . . ,ak) with respective realizations f(a). Player i’s
posterior value is a linear combination of sample realizations, i.e.

ν i(a, f(a)) = ν i0 +
k∑
j=1

τ ij (a)
(
f(aj)− µ(aj)

)
where realization f(aj) is weighted by

τ ij (a) :=
∫
A
τj(a; a)ωi(a)da

and τj(a; a) is as above.

• sensitivity of posterior to f(aj) aggregates sensitivity of the entire
extrapolated mapping to it
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Relation to Callander (2011)

• Payoff structure: finding a maximum vs. estimating the area
• Gaussian process approach allows us to bypass invoking the
Brownian bridge

(a) (b)

22



I. Single-player sampling



Ranking of samples

• Benchmark for optimal sampling in the absence of conflict
• index i dropped

• For any sample a ∈ Ak, posterior ν(a, f(a)) is centered at

ν0 =

∫ 1

0
µ(a)ω(a)da

• Posterior value is Gaussian

ν(a, f(a)) ∼ N (ν0, ψ
2(a))

• f(a) does not enter posterior variance ψ2(a)
• Samples ranked according to ψ2(a)
• Agent’s expected payoff from sample a:

V(a) = r+ (ν0 − r)Φ
(
ν0 − r
ψ(a)

)
+ ψ(a)ϕ

(
ν0 − r
ψ(a)

)
V strictly increasing and convex in ψ
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Optimal sampling

Theorem (Single-player sampling)

Fix k ∈ N. Any single-player sample a∗

(i) consists of k distinct attributes;
(ii) maximizes posterior variance ψ2(·), given by

a∗ ∈ arg max
a∈Ak

k∑
j=1

k∑
m=1

τj(a)τm(a)σ(aj,am) := ψ2(a);

(iii) is independent of µ, ν0, and r.
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a∗ ∈ arg max
a∈Ak

k∑
j=1

k∑
m=1

τj(a)τm(a)σ(aj,am) := ψ2(a);

(iii) is independent of µ, ν0, and r.

• only covariance and attribute weights enter into ψ
• two attributes reinforce each other in the sample if

τj(a)τm(a)σ(aj,am) > 0
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Optimal sampling

Theorem (Single-player sampling)

Fix k ∈ N. Any single-player sample a∗

(i) consists of k distinct attributes;
(ii) maximizes posterior variance ψ2(·), given by

a∗ ∈ arg max
a∈Ak

k∑
j=1

k∑
m=1

τj(a)τm(a)σ(aj,am) := ψ2(a);

(iii) is independent of µ, ν0, and r.

Proposition (Equivalence of sampling formats)

A sample is optimal under sequential sampling of attributes if and
only if it is optimal under simultaneous sampling.
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Site selection: Researcher’s benchmark



Implications for site selection

Let us reinterpret attributes as sites and f as outcome of the program.

A utilitarian researcher weighs all sites equally:

ωA(a) = 1 ∀a ∈ [0, 1]

Which sites would the researcher select if in charge of program
adoption as well?

1. Site selection is unbiased from expected outcomes

2. ψ(a) as a measure of external validity of sample sites a

3. Timing of pilots is immaterial: early vs. late pilots
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Distance-based covariance

Suppose site outcomes are correlated according to

σOU(a,a′) = e−|a−a′|/ℓ

where ℓ is a length-scale parameter.

We normalize µ(a) = 0 for all a ∈ [0, 1].
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Suppose site outcomes are correlated according to

σOU(a,a′) = e−|a−a′|/ℓ

where ℓ is a length-scale parameter.

We normalize µ(a) = 0 for all a ∈ [0, 1].

• distance-based covariance

• ℓ measures correlation across a fixed distance
• ℓ→ 0: independent outcomes
• ℓ→ +∞: perfectly correlated outcomes

• all site outcomes are ex ante identical

f(a) ∼ N (0, 1) for all a ∈ [0, 1]
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Distance-based covariance

Suppose site outcomes are correlated according to

σOU(a,a′) = e−|a−a′|/ℓ

where ℓ is a length-scale parameter.

We normalize µ(a) = 0 for all a ∈ [0, 1].

This covariance is highly tractable⇒ closed-form τj(a) and ψ2(a)

The researcher’s optimal sample:

• unique and symmetric around the median site 1/2
• each sample site is weighted equally
• more dispersed as correlation strengthens (i.e., ℓ ↑)
• leǒtmost site pinned down by

1− e−a
∗
1 /ℓ = tanh

(
1− 2a∗1
2ℓ(k− 1)

)
27



Varying ℓ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: The researcher’s sample illustrated for k ∈ {1, . . . , 5} (bottom up) and
ℓ = 1, ℓ = 1/2, ℓ = 1/5, ℓ = 1/20.
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Figure 5: The researcher’s sample illustrated for k ∈ {1, . . . , 5} (bottom up) and
ℓ = 1, ℓ = 1/2, ℓ = 1/5, ℓ = 1/20.

As sites become independent (ℓ→ 0), sample converges to(
1

k+ 1 , . . . ,
k

k+ 1

)
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Varying ℓ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: The researcher’s sample illustrated for k ∈ {1, . . . , 5} (bottom up) and
ℓ = 1, ℓ = 1/2, ℓ = 1/5, ℓ = 1/20.

As sites become perfectly correlated (ℓ→ +∞), sample converges to(
1
2k , . . . ,

2k− 1
2k

)
28



Sample centrality



Centrality of a sample

In the previous example, the optimal sample is central in [0, 1].

Is there a formal sense in which the optimal sample is most central in
the attribute space for any (ω, σ)?

• Yes, the optimal sample maximizes sample centrality
• Generalization of betweenness centrality to sets of nodes
• expected walk sum from a random attribute a to another a′ such
that each walk traverses sample attributes only

• random pair (a,a′) drawn according to density ω(a)ω(a′)

a

a1

a2

a3

a
0

: : :

: : :

Figure 6: Sample a = (a1, a2, a3)
Sample centrality
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II. Principal - agent sampling



Agent’s payoff

• Prior disagreement:
(
νA0 − rA, νP0 − rP

)
• Upon sampling (a, f(a)) principal adopts iff

νP (a, f(a)) ≥ rP

• ρ(a) ≡ correlation of posteriors νP(a) and νA(a)
• If ωi is the same for both players, ρ(a) = 1 for any sample a
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• Prior disagreement:
(
νA0 − rA, νP0 − rP

)
• Upon sampling (a, f(a)) principal adopts iff

νP (a, f(a)) ≥ rP

• ρ(a) ≡ correlation of posteriors νP(a) and νA(a)
• If ωi is the same for both players, ρ(a) = 1 for any sample a

Agent’s expected payoff from a

rA + Pr
(
νP(a) ≥ rP

)︸ ︷︷ ︸
probability of adoption

·

E
[
νA(a) | νP(a) ≥ rP

]︸ ︷︷ ︸
inference from adoption

−rA


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Agent’s payoff

Theorem (Sufficient statistics for a sample)
For any sample a, the agent’s expected payoff depends on a only
through the pair of sufficient statistics

(α1(a), α2(a)) := (ψP(a), ρ(a)ψA(a))

where ψi denotes posterior variance for player i. All else fixed, his
payoff is strictly increasing in α2.

Pair (α1, α2) summarizes how informative a is for each player.

• α1(a): how informative is the sample in single-principal
benchmark

• α2(a): how informative is adoption for the agent
• informativeness ψA adjusted by correlation ρ
• its sign same as the sign of ρ
• share of the posterior variance for the agent that gets reflected in
the adoption decision
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Agent’s payoff

Agent’s expected payoff from sample a

rA + (νA0 − rA)Φ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption probability

+α2(a)ϕ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption accuracy

Adoption accuracy↗ in α1 fixing α2 > 0

• better informed principal implies better informed adoption
decision

• this goes in agent’s favor iff sample aligns their interests: ρ > 0

Tradeoff between the two considerations is pinned down by (νA0 , νP0 ).
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Adoption probability↗ in α1 iff prior disagreement

• e.g., suppose νP0 > rP
• more informative for principal⇒ less adoption⇒ preferred if
νA0 < rA
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Agent’s payoff

Agent’s expected payoff from sample a

rA + (νA0 − rA)Φ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption probability

+α2(a)ϕ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption accuracy

Adoption accuracy↗ in α1 fixing α2 > 0

• better informed principal implies better informed adoption
decision

• this goes in agent’s favor iff sample aligns their interests: ρ > 0

Tradeoff between the two considerations is pinned down by (νA0 , νP0 ).

Remark
Sequential sampling strictly preferred by the agent.
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Agent’s payoff

Agent’s expected payoff from sample a

rA + (νA0 − rA)Φ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption probability

+α2(a)ϕ
(
νP0 − rP
α1(a)

)
︸ ︷︷ ︸

adoption accuracy

Adoption accuracy↗ in α1 fixing α2 > 0

• better informed principal implies better informed adoption
decision

• this goes in agent’s favor iff sample aligns their interests: ρ > 0

Tradeoff between the two considerations is pinned down by (νA0 , νP0 ).

Remark
Under prior agreement, agent seeks to increase both statistics as much
as possible.
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Two distortions

1. Joint suppression of informativeness
Is it ever optimal to select a sample that is dominated in both
informativeness statistics?

A sample a ∈ Ak is dominated if there exists another a′ ∈ Ak such
that αi(a′) ≥ αi(a) with strict inequality for some i = 1, 2.

Prior agreement is necessary.

Starkest when ωA = ωP.

2. Controversial sampling
Is it ever optimal to set ρ(a∗) < 0 if positive-correlation samples
are feasible?

Prior disagreement is necessary.

Starkest when ωA = −ωP.
Propositions
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Site selection: Strategic suppression



Strategic site selection

▶ Covariance σOU(a,a′) for all a,a′ ∈ [0, 1]

▶ Partisan evaluator P vs. utilitarian researcher A

▶ Site weights

ωP(a) =
{
+∞ for a = aP
0 for a ̸= aP

ωA(a) = 1 ∀a ∈ [0, 1]

▶ Prior values of researcher and evaluator respectively:

Average outcome : νA0 =

∫ 1

0
µ(a)da =: µ̄

Partisan outcome : νP0 = µ(aP)

▶ Where to place a single pilot (k = 1)?

For any sample site a ∈ [0, 1], the induced ρ(a) = 1. Hence,

(α1(a), α2(a)) = (ψP(a), ψA(a))
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Single-player sites

a∗P = aP ≥ 1/2, a∗A = 1/2

Figure 7: ψP in red and ψA in blue

35



1. Compromise in site selection

Sites in [1/2,aP] are compromise sites

• strict trade-off between posterior variances

Proposition

(i) If players are in prior disagreement, the optimal site is a
compromise.

(iii) Suppose prior disagreement and fix µ̄. The optimal site is
increasing in |µ(aP)|. If µ(aP) = 0, the optimal site is the median
site. For sufficiently large |µ(aP)|, the optimal site is exactly aP.
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2. Optimal selection of peripheral sites

▶ Prior agreement is necessary for the optimal site a∗ /∈ [1/2,aP]

Proposition
Suppose players are in prior agreement. For aP > 1/2 and µ(aP)
sufficiently close to zero, the optimal site is unique and a∗ < 1/2.
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Proposition
Suppose players are in prior agreement. For aP > 1/2 and µ(aP)
sufficiently close to zero, the optimal site is unique and a∗ < 1/2.

Figure 8: µ(aP) in x-axis and optimal site in y-axis. ℓ = 1/2, µ̄ = 1/2, aP = 4/5.
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2. Optimal selection of peripheral sites

▶ Prior agreement is necessary for the optimal site a∗ /∈ [1/2,aP]

Proposition
Suppose players are in prior agreement. For aP > 1/2 and µ(aP)
sufficiently close to zero, the optimal site is unique and a∗ < 1/2.

• at µ(aP) = 0, the median site is optimal
• for |µ(aP)| sufficiently small relative to |µ̄|, influencing the
probability of adoption is of first order

• suppressing ψP preserves evaluator’s prior bias
• this come at a cost for researcher: suppress ψA too
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2. Optimal selection of peripheral sites

This continues to hold even if aP = 1/2: median site is most
informative for both researcher and evaluator

Figure 8: µ(aP) in x-axis and optimal site in y-axis. Parameter values:
ℓ = 1/2, µ̄ = 1/2, aP = 1/2.
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3. Distortions largest for moderate correlation

▶ Distortions even when aA = aP = 1/2
▶ Distortions vanish as ℓ→ +∞ and ℓ→ 0
▶ |a∗ − 1/2| single-peaked in ℓ
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3. Distortions largest for moderate correlation

▶ Distortions even when aA = aP = 1/2
▶ Distortions vanish as ℓ→ +∞ and ℓ→ 0
▶ |a∗ − 1/2| single-peaked in ℓ

Figure 9: µ(aP) in x-axis and optimal site in y-axis. Parameter values:
ℓ = 10, µ̄ = 1/2, aP = 1/2.
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3. Distortions largest for moderate correlation

▶ Distortions even when aA = aP = 1/2
▶ Distortions vanish as ℓ→ +∞ and ℓ→ 0
▶ |a∗ − 1/2| single-peaked in ℓ

Figure 9: µ(aP) in x-axis and optimal site in y-axis. Parameter values:
ℓ = 1/5, µ̄ = 1/2, aP = 1/2.
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3. Distortions largest for moderate correlation

▶ Distortions even when aA = aP = 1/2
▶ Distortions vanish as ℓ→ +∞ and ℓ→ 0
▶ |a∗ − 1/2| single-peaked in ℓ

Figure 9: µ(aP) in x-axis and optimal site in y-axis. Parameter values:
ℓ = 1/10, µ̄ = 1/2, aP = 1/2.
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Concluding remarks



Discussion

Flexible framework for modeling selective sampling of attributes

1. selective learning:
simple informativeness index for identifying the single-player
sample

2. influence:
taxonomy of distortions due to the sample controlling both
learning and alignment of players
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Discussion

Tractable and novel learning framework to further address:

• Partial / targeted adoption
• the attribute problem is inherently one of full scale or no adoption
• adoption of a strict subset of attributes upon inspection
• bridge between problems of search and attribute sampling

• Aggregation of local knowledge
• constrained access to attribute realizations (site outcomes)
• sites / attributes need to be incentivized to collect and/or impart
local information

40



Thank you!
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Centrality of a sample

Heuristic construction: centrality of a sample in the attribute graph

• without loss, ω(a) ≥ 0 for all a ∈ A
• reminder: weights add to up
• σ(a,a) = 1 for all a ∈ A

▶ Infinite weighted graph G(A, E) with

• attributes as nodes
• edge weight eaa′ = σ(a,a′)

σ(a; a0)
a a

0

: : : : : :

▶ Ga: subgraph consisting of nodes a and edges within
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Sample centrality

a

a1

a2

a3

a
0

: : :

: : :

Sample centrality is a function

γ :
⋃
k∈N

Ak → R

equal to

• the sum of walks of any length . . .
• from a random node a ∈ A . . .

• to another random node a′ . . .
• drawn according to density ω(a)ω(a′) . . .
• such that all intermediate nodes in each walk are in Ga.

Akin to betweenness centrality for non-singleton sets of nodes. 42



Sample centrality

Theorem (Sample centrality of a single-player sample)

(i) For any sample a for which G is a-walk-summable, its sample
centrality is equal to the posterior variance that the sample
induces, i.e. γ(a) = ψ2(a).

(ii) Fix capacity k, and suppose G is k-walk-summable. Any
single-player sample attains the highest sample centrality.

If walk-summability fails, we modify it through path-summability

• (finite-length) paths instead of walks within Ga
• well-defined for any positive definite covariance σ

Sample centrality
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Two distortions

Proposition (Joint suppression of informativeness)

(1) An optimal sample is dominated only if players are in prior
agreement.

(2) If all the following hold:
(i) the players are in prior agreement,
(ii) there exists at least one sample a ∈ Ak such that ρ(a) > 0,
(iii) at any α2-maximal feasible sample, there exists a sample arbitrarily

close to it that is dominated by it

then there exist x̄P and xA < x̄A such that for |νP0 − rP| ≤ x̄P and
xA ≤ |νA0 − rA| ≤ x̄P any optimal sample a∗ is dominated and has
α1(a∗) > 0.
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Two distortions

Proposition (Influence via controversial sampling)

(i) A controversial sample is optimal only if players are in prior
disagreement.

(ii) When in prior disagreement, agent forgoes informative sampling
if and only if all feasible samples are controversial and ρ(a) is
sufficiently negative for all a ∈ Ak.

(iii) If the optimal sample a∗ is controversial, then for any feasible
non-controversial sample a, ψP(a∗) > ψP(a).

Back
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