Selective Learning and Influence

Arjada Bardhi<sup>1</sup> PennTheoN, April 2020

<sup>1</sup>Duke University

- agent considers the adoption of an **object of uncertain value**
- object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

- agent considers the adoption of an **object of uncertain value**
- object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

$$egin{array}{c|c} x_1 & x_2 & x_3 \ \hline a_1 & a_2 & a_3 \end{array}$$

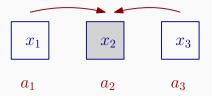
- agent considers the adoption of an **object of uncertain value**
- object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ a_1 & a_2 & a_3 \end{bmatrix}$$

- agent considers the adoption of an **object of uncertain value**
- object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ a_1 & a_2 & a_3 \end{bmatrix}$$

- agent considers the adoption of an **object of uncertain value**
- $\cdot\,$  object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes



This paper revisits a fundamental learning problem:

- agent considers the adoption of an **object of uncertain value**
- $\cdot\,$  object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

expected value =  $\omega_1 \cdot x_1 + \omega_2 \cdot \mathbb{E}[x_2 \mid x_1, x_3] + \omega_3 \cdot x_3$ 

This paper revisits a fundamental learning problem:

- agent considers the adoption of an **object of uncertain value**
- object characterized by a mass of correlated attributes
- $\cdot\,$  value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

Examples:

- ► appraising a multi-attribute product before purchase
- evaluating skill bundle of a potential employee
- gauging the spatial impact of a social program

Selective exploration of attributes has a long tradition in economics.

Attribute-based demand: Lancaster (1966), Keeney and Raiffa (1976)

Independent attributes: Neeman (1995), Klabjan, Olszewski, and Wolinsky (2014), Sanjurjo (2017)

Our attribute sampling problem significantly differs from the standard:

- ▶ search problem
- multi-armed bandit problem

Selective exploration of attributes has a long tradition in economics.

Attribute-based demand: Lancaster (1966), Keeney and Raiffa (1976)

Independent attributes: Neeman (1995), Klabjan, Olszewski, and Wolinsky (2014), Sanjurjo (2017)

Our attribute sampling problem significantly differs from the standard:

- ▶ search problem
- multi-armed bandit problem

#### This paper:

- 1. Optimal attribute sampling in the absence of agency conflict
- 2. Distortions in sampling in the presence of agency conflict
  - $\cdot$  separate authorities over sampling and adoption
  - $\cdot\,$  different weighting of attributes and/or outside option

# Site selection in program evaluation

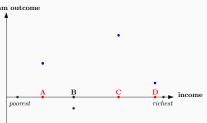
#### Selection of pilot sites as attribute sampling

- N target sites (N large)
- sites ordered according to observable characteristics
- program outcomes differ across sites
- learning through small-scale pilot studies (k << N)</li>
- program scale-up desirable if average outcome is high
- which sites should be selected for pilot testing?

# Site selection in program evaluation

Selection of pilot sites as attribute sampling

- N target sites (N large)
- sites ordered according to observable characteristics
- program outcomes differ across sites
- learning through small-scale pilot studies (k << N)</li>
- program scale-up desirable if average outcome is high
- which sites should be selected for pilot testing?



#### Empirical Concern:

Low generalizability of pilot findings in impact evaluations

- Allcott (2015), Bold et al. (2018), Vivalt (2020)
- $\cdot\,$  game between a utilitarian researcher and a partisan evaluator
- sufficient statistic for generalizability
- reasonable benchmark for generalizability
- we show the optimal pilot site of low generalizability for <u>both</u> the researcher and the evaluator

We model the attribute mapping as a realization of a Gaussian process

- flexible modeling of correlated attributes
- learning over the space of Gaussian sample paths
- covariance function as a similarity metric over pairs of attributes
  - ▶ how much can be extrapolated from one attribute to another

The analysis hinges on two key assumptions:

- 1. Jointly Gaussian attributes
- 2. Rich attribute space

# Gaussian framework

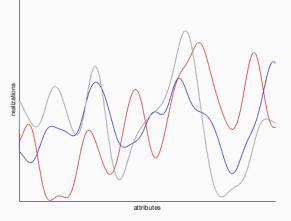


Figure 1: Sample paths of a Gaussian process

- 1. In the single-player benchmark, the optimal sample
  - maximizes a single informativeness statistic
    - sample balances generalizability to out-of-sample attributes with non-redundancy within sample
    - maximally central in a corresponding attribute graph
  - $\cdot\,$  is independent of expected value of attributes/project
  - is independent of timing format (sequential vs. simultaneous)

- 2. When agent samples and principal adopts:
  - the value of a sample hinges on two informativeness statistics, one for each player
  - prior agreement between players brings
    - · suppression of informativeness for both players
    - controversial sampling
  - distortions in sample size, content, and delay

# Model

# Players and timing

- Two players: principal (P) and agent (A)
- Players jointly evaluate a multi-attribute project of unknown quality
- Separate authorities:

t = 1: A samples attributes

- t = 2: *P* decides whether to adopt
- Sample observations revealed publicly
  - symmetrically informed players
  - $\cdot$  no contracting
- Formats of sampling contrasted
  - (i) simultaneous
  - (ii) sequential

- Attributes  $a \in \mathcal{A} := [0, 1]$
- Unknown mapping  $f : \mathcal{A} \to \mathbb{R}$  determines attribute realizations
- $\cdot$  f drawn from the space of sample paths of a Gaussian process

 $f \sim \mathcal{GP}(\mu, \sigma)$ 

where prior mean  $\mu$  and symmetric positive definite covariance  $\sigma$ :

 $\mu: \mathcal{A} \to \mathbb{R}$  $\sigma: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ 

- Attributes  $a \in \mathcal{A} := [0, 1]$
- Unknown mapping  $f : \mathcal{A} \to \mathbb{R}$  determines attribute realizations
- $\cdot$  f drawn from the space of sample paths of a Gaussian process

 $f \sim \mathcal{GP}(\mu, \sigma)$ 

where prior mean  $\mu$  and symmetric positive definite covariance  $\sigma$ :

 $\mu : \mathcal{A} \to \mathbb{R}$  $\sigma : \mathcal{A} \times \mathcal{A} \to \mathbb{R}$  $\mu(a) = \mathbb{E}[f(a)], \quad \sigma(a, a') = \mathbb{E}\left[(f(a) - \mu(a))(f(a') - \mu(a'))\right]$ 

- Attributes  $a \in \mathcal{A} := [0, 1]$
- Unknown mapping  $f : \mathcal{A} \to \mathbb{R}$  determines attribute realizations
- *f* drawn from the space of sample paths of a Gaussian process

 $f \sim \mathcal{GP}(\mu, \sigma)$ 

where prior mean  $\mu$  and symmetric positive definite covariance  $\sigma$ :

 $\mu: \mathcal{A} \to \mathbb{R}$  $\sigma: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ 

- · ( $\mu,\sigma$ ) perfectly known by both players
- $\sigma(a, a')$  similarity metric among attribute pair (a, a')

- Attributes  $a \in \mathcal{A} := [0, 1]$
- Unknown mapping  $f : \mathcal{A} \to \mathbb{R}$  determines attribute realizations
- $\cdot$  f drawn from the space of sample paths of a Gaussian process

 $f \sim \mathcal{GP}(\mu, \sigma)$ 

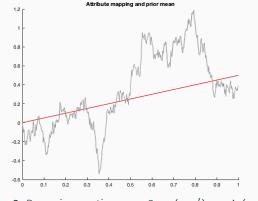
where prior mean  $\mu$  and symmetric positive definite covariance  $\sigma$ :

 $\mu: \mathcal{A} \to \mathbb{R}$  $\sigma: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ 

- · ( $\mu,\sigma$ ) perfectly known by both players
- $\cdot \sigma(a,a')$  similarity metric among attribute pair (a,a')

Assumption (Continuity of sample paths) Almost surely any realization of f is continuous.

#### Brownian motion is a Gaussian process.



**Figure 2:** Brownian motion:  $\mu = 2a$ ,  $\sigma(a, a') = \min(a, a')$ 

Finite distribution: For any *k*-sample of attributes  $\mathbf{a} = (a_1, \ldots, a_k)$ 

$$f(\mathbf{a}) := \begin{pmatrix} f(a_1) \\ \vdots \\ f(a_k) \end{pmatrix} \sim \mathcal{N} \left( \underbrace{\begin{pmatrix} \mu(a_1) \\ \vdots \\ \mu(a_k) \end{pmatrix}}_{\mu(\mathbf{a})}, \underbrace{\begin{pmatrix} \sigma(a_1, a_1) & \dots & \sigma(a_1, a_k) \\ \vdots & \ddots & \vdots \\ \sigma(a_k, a_1) & \dots & \sigma(a_k, a_k) \end{pmatrix}}_{\Sigma(\mathbf{a})} \right)$$

If a drawn, f(a) observed perfectly by both players

 $A_k$  is the set of non-redundant samples of size at most k:

 $\mathcal{A}_k := \{(a_1, \ldots, a_n) \in \mathcal{A}^n, \forall n \leq k, n \in \mathbb{N} \mid \Sigma((a_1, \ldots, a_n)) \text{ is non-singular}\}$ 

#### **Cost of sampling** exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$c(n) = egin{cases} 0 & ext{if } n \leq k \ +\infty & ext{otherwise} \end{cases}$$

**Rejection payoff** heterogenous payoffs from status quo  $(r_A, r_P) \in \mathbb{R}^2$ **Adoption payoff** player *i* obtains ex-post payoff

$$w_i = \int_{\mathcal{A}} f(a) \omega_i(a) \, \mathrm{d}a$$

where  $\omega_i : \mathcal{A} \to \mathbb{R}$  is a Lebesgue-integrable attribute weight function for player *i* 

**Cost of sampling** exogenous (finite) sampling capacity  $k \in \mathbb{N}$ 

$$\mathcal{L}(n) = \begin{cases} 0 & \text{if } n \leq k \ +\infty & \text{otherwise} \end{cases}$$

**Rejection payoff** heterogenous payoffs from status quo  $(r_A, r_P) \in \mathbb{R}^2$ **Adoption payoff** player *i* obtains ex-post payoff

$$v_i = \int_{\mathcal{A}} f(a) \omega_i(a) \, \mathrm{d}a$$

where  $\omega_i : \mathcal{A} \to \mathbb{R}$  is a Lebesgue-integrable attribute weight function for player *i* 

Without loss, for both players

$$\int_{\mathcal{A}} \omega_i(a) \, \mathrm{d}a = 1.$$

In the single-player benchmark we normalize  $\omega(\cdot) \geq 0$ .

**Cost of sampling** exogenous (finite) sampling capacity  $k \in \mathbb{N}$ 

$$\mathcal{L}(n) = \begin{cases} 0 & \text{if } n \leq k \ +\infty & \text{otherwise} \end{cases}$$

**Rejection payoff** heterogenous payoffs from status quo  $(r_A, r_P) \in \mathbb{R}^2$ **Adoption payoff** player *i* obtains ex-post payoff

$$v_i = \int_{\mathcal{A}} f(a) \omega_i(a) \, \mathrm{d}a$$

where  $\omega_i : \mathcal{A} \to \mathbb{R}$  is a Lebesgue-integrable attribute weight function for player *i* 

Player *i*'s prior value from the project

$$\nu_0^i := \mathbb{E}[\mathsf{v}_i] = \int_{\mathcal{A}} \mu(a) \omega_i(a) \, \mathrm{d}a$$

**Cost of sampling** exogenous (finite) sampling capacity  $k \in \mathbb{N}$ 

$$\mathcal{L}(n) = \begin{cases} 0 & \text{if } n \leq k \ +\infty & \text{otherwise} \end{cases}$$

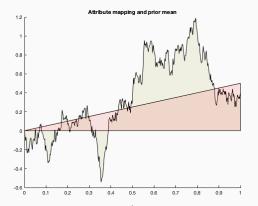
**Rejection payoff** heterogenous payoffs from status quo  $(r_A, r_P) \in \mathbb{R}^2$ **Adoption payoff** player *i* obtains ex-post payoff

$$v_i = \int_{\mathcal{A}} f(a) \omega_i(a) \, \mathrm{d}a$$

where  $\omega_i : \mathcal{A} \to \mathbb{R}$  is a Lebesgue-integrable attribute weight function for player *i* 

$$\mathbf{v}_{i} \sim \mathcal{N}\left(\mathbf{v}_{0}^{i}, \quad \underbrace{\int_{\mathcal{A}} \int_{\mathcal{A}} \sigma(a, a') \omega(a) \omega(a') \, \mathrm{d}a \, \mathrm{d}a'}_{\mathbf{v}}\right)$$

aggregate uncertainty about the project



**Figure 3:**  $v^i$  depicted in yellow and  $\nu_0^i$  in red if  $\omega_i(a) = 1$  for all  $a \in [0, 1]$ 

**Cost of sampling** exogenous (finite) sampling capacity  $k \in \mathbb{N}$ 

$$c(n) = \begin{cases} 0 & \text{if } n \leq k \\ +\infty & \text{otherwise} \end{cases}$$

**Rejection payoff** heterogenous payoffs from status quo  $(r_A, r_P) \in \mathbb{R}^2$ **Adoption payoff** player *i* obtains ex-post payoff

$$v_i = \int_{\mathcal{A}} f(a) \omega_i(a) \, \mathrm{d}a$$

where  $\omega_i : \mathcal{A} \to \mathbb{R}$  is a Lebesgue-integrable attribute weight function for player *i* 

Sources of conflict:

- 1. relative importance of attributes ( $\omega_P, \omega_A$ )
- 2. threshold on adoption  $(r_A, r_P)$

## Definition

Players are in *prior disagreement* about the project's initial worth if  $(v_0^P - r_P)$  and  $(v_0^A - r_A)$  have opposite signs.

They are in *prior agreement* otherwise.

## Definition

Players are in *prior disagreement* about the project's initial worth if  $(v_0^p - r_P)$  and  $(v_0^A - r_A)$  have opposite signs.

They are in *prior agreement* otherwise.

• In the absence of any sampling, prior disagreement implies that players favor different adoption decision.

#### Assumption

Fix  $k\in\mathbb{N}.$  For any  $a\in\mathcal{A}_{k},$  any realization f(a), and at least some player,

 $Var[v_i | a, f(a)] > 0.$ 

#### Lemma (Extrapolation)

Fix a sample  $\mathbf{a} = (a_1, \dots, a_k)$  with respective realizations  $f(\mathbf{a})$  and attribute  $\hat{a} \in A$ . The expected realization  $f(\hat{a})$  is given by

$$\mathbb{E}[f(\hat{a}) \mid \mathbf{a}, f(\mathbf{a})] = \mu(\hat{a}) + \sum_{j=1}^{k} \tau_j(\hat{a}; \mathbf{a}) \left( f(a_j) - \mu(a_j) \right),$$

where  $\tau_j(\hat{a}; \mathbf{a})$ , its sensitivity to observation  $f(a_j)$ , is the  $(1, j)^{th}$  entry of matrix

$$\left(\sigma(a_1,\hat{a}) \quad \dots \quad \sigma(a_k,\hat{a})\right)\Sigma^{-1}(\mathbf{a})$$

#### Lemma (Extrapolation)

Fix a sample  $\mathbf{a} = (a_1, \dots, a_k)$  with respective realizations  $f(\mathbf{a})$  and attribute  $\hat{a} \in A$ . The expected realization  $f(\hat{a})$  is given by

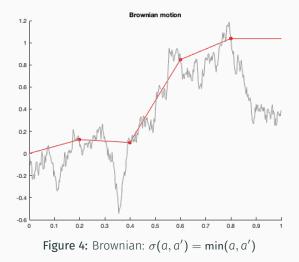
$$\mathbb{E}[f(\hat{a}) \mid \mathbf{a}, f(\mathbf{a})] = \mu(\hat{a}) + \sum_{j=1}^{k} \tau_j(\hat{a}; \mathbf{a}) \left( f(a_j) - \mu(a_j) \right),$$

where  $\tau_j(\hat{a}; \mathbf{a})$ , its sensitivity to observation  $f(a_j)$ , is the  $(1, j)^{th}$  entry of matrix

$$\left(\sigma(a_1,\hat{a}) \quad \dots \quad \sigma(a_k,\hat{a})\right)\Sigma^{-1}(\mathbf{a}).$$

- predicted realization for any attribute is a linear combination of sample realizations
- $\tau(\hat{a}; a_j) \equiv$  extent to which  $f(a_j)$  contributes to the guess for  $f(\hat{a})$
- + exact shape of extrapolation depends on covariance  $\sigma$

Examples:  $\mu(a) = 0$ , a = (1/5, 2/5, 3/5, 4/5)



### Examples: $\mu(a) = 0$ , $\mathbf{a} = (1/5, 2/5, 3/5, 4/5)$

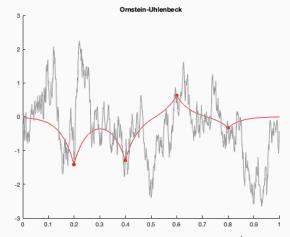


Figure 4: Ornstein-Uhlenbeck:  $\sigma(a, a') = e^{-|a-a'|/\ell}$ ,  $\ell = 1/20$ 

### Examples: $\mu(a) = 0$ , a = (1/5, 2/5, 3/5, 4/5)

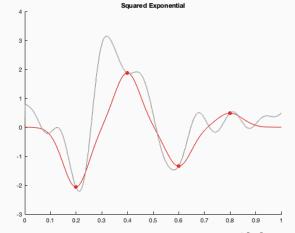
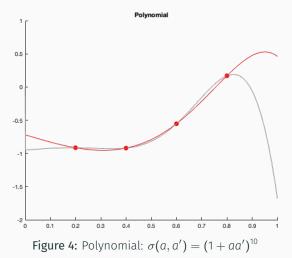


Figure 4: Squared exponential:  $\sigma(a, a') = e^{-(a-a')^2/\ell^2}$ ,  $\ell = 1/20$ 

### Examples: $\mu(a) = 0$ , a = (1/5, 2/5, 3/5, 4/5)



### Posterior value

#### Lemma

Fix sample  $\mathbf{a} = (a_1, \dots, a_k)$  with respective realizations  $f(\mathbf{a})$ . Player i's posterior value is a linear combination of sample realizations, i.e.

$$\nu^{i}(\mathbf{a},f(\mathbf{a})) = \nu_{0}^{i} + \sum_{j=1}^{k} \tau_{j}^{i}(\mathbf{a}) \left(f(a_{j}) - \mu(a_{j})\right)$$

where realization  $f(a_j)$  is weighted by

$$au_j^i(\mathbf{a}) := \int_{\mathcal{A}} au_j(a; \mathbf{a}) \omega_j(a) \, \mathrm{d}a$$

and  $\tau_j(a; \mathbf{a})$  is as above.

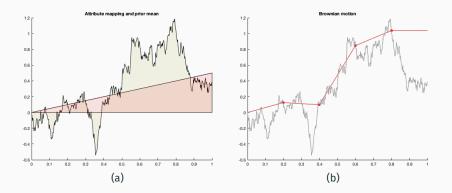
 sensitivity of posterior to f(a<sub>j</sub>) aggregates sensitivity of the entire extrapolated mapping to it

### **Related work**

- 1. Attribute discovery and selective information gathering: Neeman (1995), Branco, Sun and Villas-Boas (2012), Klabjan, Olszewski, Wolinsky (2014), Olszewski and Wolinsky (2016), Sanjurjo (2017), Che and Mierendorff (2017), Liang, Mu, Syrgkanis (2020)
- 2. Learning and experimentation over Gaussian paths: Jovanovic and Rob (1990), Aghion, Bolton, Harris, and Jullien (1991), Callander (2011), Callander and Hummel (2014), Garfagnini and Strulovici (2016), Ilut and Valchev (2017)
- 3. **Persuasion through constrained experimental design**: Glazer and Rubinstein (2004), Brocas and Carrillo (2007), Rayo and Segal (2010), Hirsch (2016), Banerjee, Chassang, Montero, Snowberg (2017), Di Tillio, Ottaviani, Sorensen (2017)
- 4. **GPs in geostatistics and machine learning**: Matheron (1963, 1967), Chilés and Delfiner (2012), Rasmussen and Williams (2006)

### Relation to Callander (2011)

- Payoff structure: finding a maximum vs. estimating the area
- Gaussian process approach allows us to bypass invoking the Brownian bridge



I. Single-player sampling

- Benchmark for optimal sampling in the absence of conflict
  - index i dropped

- Benchmark for optimal sampling in the absence of conflict
  - index i dropped
- For any sample  $\mathbf{a} \in \mathcal{A}_k$ , posterior  $\nu(\mathbf{a}, f(\mathbf{a}))$  is centered at

$$\nu_0 = \int_0^1 \mu(a)\omega(a)da$$

• Posterior value is Gaussian

$$\nu(\mathbf{a}, f(\mathbf{a})) \sim \mathcal{N}(\nu_0, \psi^2(\mathbf{a}))$$

- $f(\mathbf{a})$  does not enter posterior variance  $\psi^2(\mathbf{a})$
- Samples ranked according to  $\psi^2(\mathbf{a})$

- Benchmark for optimal sampling in the absence of conflict
  - index i dropped
- For any sample  $\mathbf{a} \in \mathcal{A}_k$ , posterior  $\nu(\mathbf{a}, f(\mathbf{a}))$  is centered at

$$\nu_0 = \int_0^1 \mu(a) \omega(a) da$$

• Posterior value is Gaussian

$$\nu(\mathsf{a}, f(\mathsf{a})) \sim \mathcal{N}(\nu_0, \psi^2(\mathsf{a}))$$

- $f(\mathbf{a})$  does not enter posterior variance  $\psi^2(\mathbf{a})$
- Samples ranked according to  $\psi^2(\mathbf{a})$
- Agent's expected payoff from sample **a**:

$$V(\mathbf{a}) = r + (\nu_0 - r)\Phi\left(\frac{\nu_0 - r}{\psi(\mathbf{a})}\right) + \psi(\mathbf{a})\phi\left(\frac{\nu_0 - r}{\psi(\mathbf{a})}\right)$$

V strictly increasing and convex in  $\psi$ 

- $\cdot\,$  Benchmark for optimal sampling in the absence of conflict
  - index i dropped
- For any sample  $\mathbf{a} \in \mathcal{A}_k$ , posterior  $\nu(\mathbf{a}, f(\mathbf{a}))$  is centered at

$$\nu_0 = \int_0^1 \mu(a) \omega(a) da$$

• Posterior value is Gaussian

$$\nu(\mathsf{a}, f(\mathsf{a})) \sim \mathcal{N}(\nu_0, \psi^2(\mathsf{a}))$$

- $f(\mathbf{a})$  does not enter posterior variance  $\psi^2(\mathbf{a})$
- Samples ranked according to  $\psi^2(\mathbf{a})$
- Agent's expected payoff from sample **a**:

$$V(\mathbf{a}) = r + (\nu_0 - r)\Phi\left(\frac{\nu_0 - r}{\psi(\mathbf{a})}\right) + \psi(\mathbf{a})\phi\left(\frac{\nu_0 - r}{\psi(\mathbf{a})}\right)$$

V strictly increasing and convex in  $\psi$ 

# Optimal sampling

Theorem (Single-player sampling)

Fix  $k \in \mathbb{N}$ . Any single-player sample  $\mathbf{a}^*$ 

(i) consists of k distinct attributes;

(ii) maximizes posterior variance  $\psi^2(\cdot)$ , given by

$$\mathbf{a}^* \in \arg \max_{\mathbf{a} \in \mathcal{A}_k} \quad \sum_{j=1}^k \sum_{m=1}^k \tau_j(\mathbf{a}) \tau_m(\mathbf{a}) \sigma(a_j, a_m) := \psi^2(\mathbf{a});$$

(iii) is independent of  $\mu$ ,  $\nu_0$ , and r.

Theorem (Single-player sampling)

Fix  $k \in \mathbb{N}$ . Any single-player sample  $\mathbf{a}^*$ 

- (i) consists of k distinct attributes;
- (ii) maximizes posterior variance  $\psi^2(\cdot)$ , given by

$$\mathbf{a}^* \in \arg \max_{\mathbf{a} \in \mathcal{A}_k} \quad \sum_{j=1}^k \sum_{m=1}^k \tau_j(\mathbf{a}) \tau_m(\mathbf{a}) \sigma(a_j, a_m) := \psi^2(\mathbf{a});$$

(iii) is independent of  $\mu$ ,  $\nu_0$ , and r.

- only covariance and attribute weights enter into  $\psi$
- two attributes reinforce each other in the sample if

$$\tau_j(\mathbf{a})\tau_m(\mathbf{a})\sigma(a_j,a_m)>0$$

# Optimal sampling

Theorem (Single-player sampling)

Fix  $k \in \mathbb{N}$ . Any single-player sample  $\mathbf{a}^*$ 

(i) consists of k distinct attributes;

(ii) maximizes posterior variance  $\psi^2(\cdot)$ , given by

$$\mathbf{a}^* \in \arg \max_{\mathbf{a} \in \mathcal{A}_k} \quad \sum_{j=1}^k \sum_{m=1}^k \tau_j(\mathbf{a}) \tau_m(\mathbf{a}) \sigma(a_j, a_m) := \psi^2(\mathbf{a});$$

(iii) is independent of  $\mu$ ,  $\nu_0$ , and r.

### Proposition (Equivalence of sampling formats)

A sample is optimal under sequential sampling of attributes if and only if it is optimal under simultaneous sampling.

Site selection: Researcher's benchmark

Let us reinterpret attributes as sites and *f* as outcome of the program. A utilitarian researcher weighs all sites equally:

$$\omega_A(a) = 1 \quad \forall a \in [0, 1]$$

Which sites would the researcher select if in charge of program adoption as well?

- 1. Site selection is unbiased from expected outcomes
- 2.  $\psi(\mathbf{a})$  as a measure of external validity of sample sites  $\mathbf{a}$
- 3. Timing of pilots is immaterial: early vs. late pilots

### Distance-based covariance

Suppose site outcomes are correlated according to

$$\sigma_{OU}(a,a') = e^{-|a-a'|/\ell}$$

where  $\ell$  is a length-scale parameter.

We normalize  $\mu(a) = 0$  for all  $a \in [0, 1]$ .

Suppose site outcomes are correlated according to

$$\sigma_{OU}(a,a') = e^{-|a-a'|/\ell}$$

where  $\ell$  is a length-scale parameter.

We normalize  $\mu(a) = 0$  for all  $a \in [0, 1]$ .

- distance-based covariance
- +  $\ell$  measures correlation across a fixed distance
  - ·  $\ell \rightarrow 0$ : independent outcomes
  - ·  $\ell \to +\infty$ : perfectly correlated outcomes
- · all site outcomes are ex ante identical

 $f(a) \sim \mathcal{N}(0, 1)$  for all  $a \in [0, 1]$ 

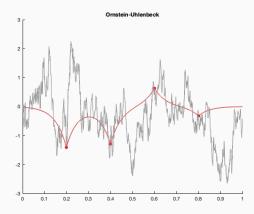
### Distance-based covariance

Suppose site outcomes are correlated according to

$$\sigma_{OU}(a,a') = e^{-|a-a'|/\ell}$$

where  $\ell$  is a length-scale parameter.

We normalize  $\mu(a) = 0$  for all  $a \in [0, 1]$ .



Suppose site outcomes are correlated according to

$$\sigma_{OU}(a,a') = e^{-|a-a'|/\ell}$$

where  $\ell$  is a length-scale parameter.

We normalize  $\mu(a) = 0$  for all  $a \in [0, 1]$ .

This covariance is highly tractable  $\Rightarrow$  closed-form  $\tau_i(\mathbf{a})$  and  $\psi^2(\mathbf{a})$ 

The researcher's optimal sample:

- unique and symmetric around the median site 1/2
- each sample site is weighted equally
- more dispersed as correlation strengthens (i.e.,  $\ell \uparrow$ )
- leftmost site pinned down by

$$1 - e^{-a_1^*/\ell} = \tanh\left(\frac{1 - 2a_1^*}{2\ell(k-1)}\right)$$

Varying  $\ell$ 

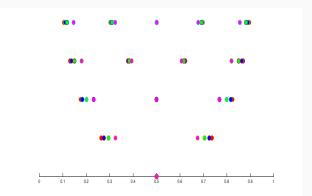


Figure 5: The researcher's sample illustrated for  $k \in \{1, ..., 5\}$  (bottom up) and  $\ell = 1, \ell = 1/2, \ell = 1/5, \ell = 1/20$ .

Varying  $\ell$ 

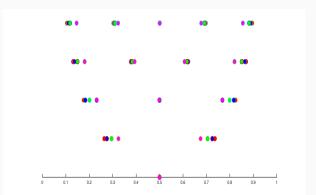


Figure 5: The researcher's sample illustrated for  $k \in \{1, ..., 5\}$  (bottom up) and  $\ell = 1, \ell = 1/2, \ell = 1/5, \ell = 1/20$ .

As sites become independent ( $\ell 
ightarrow$  0), sample converges to

$$\left(\frac{1}{k+1},\ldots,\frac{k}{k+1}\right)$$
28

Varying  $\ell$ 

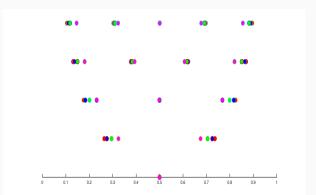


Figure 5: The researcher's sample illustrated for  $k \in \{1, ..., 5\}$  (bottom up) and  $\ell = 1, \ell = 1/2, \ell = 1/5, \ell = 1/20$ .

As sites become perfectly correlated ( $\ell 
ightarrow +\infty$ ), sample converges to

$$\left(\frac{1}{2k},\ldots,\frac{2k-1}{2k}\right)$$

Sample centrality

In the previous example, the optimal sample is central in [0, 1].

Is there a formal sense in which the optimal sample is most central in the attribute space for any  $(\omega, \sigma)$ ?

In the previous example, the optimal sample is central in [0, 1].

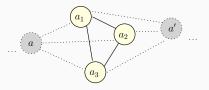
Is there a formal sense in which the optimal sample is most central in the attribute space for any  $(\omega, \sigma)$ ?

- Yes, the optimal sample maximizes sample centrality
- Generalization of betweenness centrality to sets of nodes

In the previous example, the optimal sample is central in [0, 1].

Is there a formal sense in which the optimal sample is most central in the attribute space for any  $(\omega, \sigma)$ ?

- Yes, the optimal sample maximizes sample centrality
- Generalization of betweenness centrality to sets of nodes
- expected walk sum from a random attribute *a* to another *a*' such that each walk traverses sample attributes only
- $\cdot$  random pair (a,a') drawn according to density  $\omega(a)\omega(a')$



**Figure 6:** Sample  $a = (a_1, a_2, a_3)$ 

II. Principal - agent sampling

- Prior disagreement:  $(\nu_0^A r_A, \nu_0^P r_P)$
- Upon sampling (a, f(a)) principal adopts iff

 $\nu^{P}(\mathbf{a},f(\mathbf{a}))\geq r_{P}$ 

- $\rho(\mathbf{a}) \equiv \text{correlation of posteriors } \nu^{P}(\mathbf{a}) \text{ and } \nu^{A}(\mathbf{a})$ 
  - If  $\omega_i$  is the same for both players,  $\rho(\mathbf{a}) = 1$  for any sample  $\mathbf{a}$

- Prior disagreement:  $(\nu_0^A r_A, \nu_0^P r_P)$
- Upon sampling (a, f(a)) principal adopts iff

 $\nu^{P}(\mathbf{a},f(\mathbf{a}))\geq r_{P}$ 

- $\rho(\mathbf{a}) \equiv \text{correlation of posteriors } \nu^{P}(\mathbf{a}) \text{ and } \nu^{A}(\mathbf{a})$ 
  - If  $\omega_i$  is the same for both players,  $\rho(\mathbf{a}) = 1$  for any sample  $\mathbf{a}$

Agent's expected payoff from **a** 

$$r_{A} + \underbrace{\Pr\left(\nu^{P}(\mathbf{a}) \geq r_{P}\right)}_{\text{probability of adoption}} \cdot \left(\underbrace{\mathbb{E}\left[\nu^{A}(\mathbf{a}) \mid \nu^{P}(\mathbf{a}) \geq r_{P}\right]}_{\text{inference from adoption}} - r_{A}\right)$$

#### Theorem (Sufficient statistics for a sample)

For any sample **a**, the agent's expected payoff depends on **a** only through the pair of sufficient statistics

 $(\alpha_1(\mathbf{a}), \alpha_2(\mathbf{a})) := (\psi_P(\mathbf{a}), \rho(\mathbf{a})\psi_A(\mathbf{a}))$ 

where  $\psi_i$  denotes posterior variance for player i. All else fixed, his payoff is strictly increasing in  $\alpha_2$ .

#### Theorem (Sufficient statistics for a sample)

For any sample **a**, the agent's expected payoff depends on **a** only through the pair of sufficient statistics

 $(\alpha_1(\mathbf{a}), \alpha_2(\mathbf{a})) := (\psi_P(\mathbf{a}), \rho(\mathbf{a})\psi_A(\mathbf{a}))$ 

where  $\psi_i$  denotes posterior variance for player i. All else fixed, his payoff is strictly increasing in  $\alpha_2$ .

Pair  $(\alpha_1, \alpha_2)$  summarizes how informative **a** is for each player.

- *α*<sub>1</sub>(a): how informative is the sample in single-principal benchmark
- $\alpha_2(\mathbf{a})$ : how informative is adoption for the agent
  - + informativeness  $\psi_{\mathrm{A}}$  adjusted by correlation ho
  - + its sign same as the sign of ho
  - share of the posterior variance for the agent that gets reflected in the adoption decision

Agent's expected payoff from sample **a** 

$$r_{A} + \underbrace{(\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption probability}} + \underbrace{\alpha_{2}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption accuracy}}$$

Agent's expected payoff from sample **a** 

$$r_{A} + \underbrace{(\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption probability}} + \underbrace{\alpha_{2}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption accuracy}}$$

Adoption probability  $\nearrow$  in  $\alpha_1$  iff prior disagreement

- + e.g., suppose  $\nu_0^P > r_P$
- more informative for principal  $\Rightarrow$  less adoption  $\Rightarrow$  preferred if  $\nu_0^A < r_A$

Agent's expected payoff from sample **a** 

$$r_{A} + \underbrace{(\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption probability}} + \underbrace{\alpha_{2}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption accuracy}}$$

Adoption accuracy  $\nearrow$  in  $\alpha_1$  fixing  $\alpha_2 > 0$ 

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: ho > 0

Tradeoff between the two considerations is pinned down by  $(\nu_0^A, \nu_0^P)$ .

Agent's expected payoff from sample **a** 

$$r_{A} + \underbrace{(\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption probability}} + \underbrace{\alpha_{2}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption accuracy}}$$

#### Adoption accuracy $\nearrow$ in $\alpha_1$ fixing $\alpha_2 > 0$

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: ho > 0

Tradeoff between the two considerations is pinned down by  $(\nu_0^A, \nu_0^P)$ .

#### Remark

Sequential sampling strictly preferred by the agent.

# Agent's payoff

Agent's expected payoff from sample **a** 

$$r_{A} + \underbrace{(\nu_{0}^{A} - r_{A})\Phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption probability}} + \underbrace{\alpha_{2}(\mathbf{a})\phi\left(\frac{\nu_{0}^{P} - r_{P}}{\alpha_{1}(\mathbf{a})}\right)}_{\text{adoption accuracy}}$$

Adoption accuracy  $\nearrow$  in  $\alpha_1$  fixing  $\alpha_2 > 0$ 

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: ho > 0

Tradeoff between the two considerations is pinned down by  $(\nu_0^A, \nu_0^P)$ .

#### Remark

Under prior agreement, agent seeks to increase both statistics as much as possible.

# Two distortions

#### 1. Joint suppression of informativeness

Is it ever optimal to select a sample that is **dominated** in both informativeness statistics?

A sample  $\mathbf{a} \in \mathcal{A}_k$  is *dominated* if there exists another  $\mathbf{a}' \in \mathcal{A}_k$  such that  $\alpha_i(\mathbf{a}') \ge \alpha_i(\mathbf{a})$  with strict inequality for some i = 1, 2.

# Two distortions

#### 1. Joint suppression of informativeness

Is it ever optimal to select a sample that is **dominated** in both informativeness statistics?

A sample  $\mathbf{a} \in \mathcal{A}_k$  is *dominated* if there exists another  $\mathbf{a}' \in \mathcal{A}_k$  such that  $\alpha_i(\mathbf{a}') \ge \alpha_i(\mathbf{a})$  with strict inequality for some i = 1, 2.

#### 2. Controversial sampling

Is it ever optimal to set  $\rho(a^*) < 0$  if positive-correlation samples are feasible?

# Two distortions

### 1. Joint suppression of informativeness

Is it ever optimal to select a sample that is **dominated** in both informativeness statistics?

A sample  $\mathbf{a} \in \mathcal{A}_k$  is *dominated* if there exists another  $\mathbf{a}' \in \mathcal{A}_k$  such that  $\alpha_i(\mathbf{a}') \ge \alpha_i(\mathbf{a})$  with strict inequality for some i = 1, 2.

Prior agreement is necessary.

#### 2. Controversial sampling

Is it ever optimal to set  $\rho(a^*) < 0$  if positive-correlation samples are feasible?

Prior disagreement is necessary.

### 1. Joint suppression of informativeness

Is it ever optimal to select a sample that is **dominated** in both informativeness statistics?

A sample  $\mathbf{a} \in \mathcal{A}_k$  is *dominated* if there exists another  $\mathbf{a}' \in \mathcal{A}_k$  such that  $\alpha_i(\mathbf{a}') \ge \alpha_i(\mathbf{a})$  with strict inequality for some i = 1, 2.

Prior agreement is necessary.

Starkest when  $\omega_A = \omega_P$ .

#### 2. Controversial sampling

Is it ever optimal to set  $\rho(a^*) < 0$  if positive-correlation samples are feasible?

Prior disagreement is necessary.

Starkest when  $\omega_A = -\omega_P$ .

### 1. Joint suppression of informativeness

Is it ever optimal to select a sample that is **dominated** in both informativeness statistics?

A sample  $\mathbf{a} \in \mathcal{A}_k$  is *dominated* if there exists another  $\mathbf{a}' \in \mathcal{A}_k$  such that  $\alpha_i(\mathbf{a}') \ge \alpha_i(\mathbf{a})$  with strict inequality for some i = 1, 2.

Prior agreement is necessary.

Starkest when  $\omega_A = \omega_P$ .

#### 2. Controversial sampling

Is it ever optimal to set  $\rho(a^*) < 0$  if positive-correlation samples are feasible?

Prior disagreement is necessary.

Starkest when  $\omega_A = -\omega_P$ .



Site selection: Strategic suppression

# Strategic site selection

- ▶ Covariance  $\sigma_{OU}(a, a')$  for all  $a, a' \in [0, 1]$
- ▶ Partisan evaluator *P* vs. utilitarian researcher *A*
- ► Site weights

$$\omega_P(a) = \begin{cases} +\infty & \text{for } a = a_P \\ 0 & \text{for } a \neq a_P \end{cases} \qquad \qquad \omega_A(a) = 1 \quad \forall a \in [0, 1] \end{cases}$$

# Strategic site selection

- ▶ Covariance  $\sigma_{OU}(a, a')$  for all  $a, a' \in [0, 1]$
- ▶ Partisan evaluator P vs. utilitarian researcher A
- ▶ Site weights

$$\omega_P(a) = \begin{cases} +\infty & \text{for } a = a_P \\ 0 & \text{for } a \neq a_P \end{cases} \qquad \omega_A(a) = 1 \quad \forall a \in [0, 1] \end{cases}$$

▶ Prior values of researcher and evaluator respectively:

Average outcome : 
$$\nu_0^A = \int_0^1 \mu(a) \, da =: \bar{\mu}$$
  
Partisan outcome :  $\nu_0^P = \mu(a_P)$ 

# Strategic site selection

- ▶ Covariance  $\sigma_{OU}(a, a')$  for all  $a, a' \in [0, 1]$
- ▶ Partisan evaluator P vs. utilitarian researcher A
- ▶ Site weights

$$\omega_P(a) = \begin{cases} +\infty & \text{for } a = a_P \\ 0 & \text{for } a \neq a_P \end{cases} \qquad \omega_A(a) = 1 \quad \forall a \in [0, 1] \end{cases}$$

▶ Prior values of researcher and evaluator respectively:

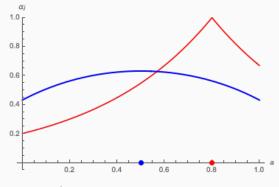
Average outcome : 
$$\nu_0^A = \int_0^1 \mu(a) \, da =: \bar{\mu}$$
  
Partisan outcome :  $\nu_0^P = \mu(a_P)$ 

► Where to place a single pilot (k = 1)? For any sample site  $a \in [0, 1]$ , the induced  $\rho(a) = 1$ . Hence,

$$(\alpha_1(a), \alpha_2(a)) = (\psi_P(a), \psi_A(a))$$

# Single-player sites

$$a_P^* = a_P \ge 1/2, \quad a_A^* = 1/2$$



**Figure 7:**  $\psi_P$  in red and  $\psi_A$  in blue

### Sites in $[1/2, a_P]$ are compromise sites

strict trade-off between posterior variances

## Proposition

- (i) If players are in prior disagreement, the optimal site is a compromise.
- (iii) Suppose prior disagreement and fix μ
  . The optimal site is increasing in |μ(a<sub>P</sub>)|. If μ(a<sub>P</sub>) = 0, the optimal site is the median site. For sufficiently large |μ(a<sub>P</sub>)|, the optimal site is exactly a<sub>P</sub>.

▶ Prior agreement is necessary for the optimal site  $a^* \notin [1/2, a_P]$ 

#### Proposition

► Prior agreement is necessary for the optimal site  $a^* \notin [1/2, a_P]$ Proposition

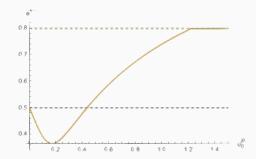
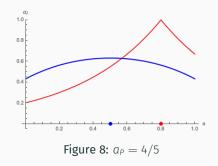


Figure 8:  $\mu(a_P)$  in x-axis and optimal site in y-axis.  $\ell = 1/2, \bar{\mu} = 1/2, a_P = 4/5$ .

► Prior agreement is necessary for the optimal site  $a^* \notin [1/2, a_P]$ Proposition

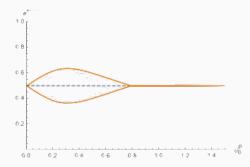


▶ Prior agreement is necessary for the optimal site  $a^* \notin [1/2, a_P]$ 

### Proposition

- at  $\mu(a_P) = 0$ , the median site is optimal
- for  $|\mu(a_P)|$  sufficiently small relative to  $|\bar{\mu}|$ , influencing the probability of adoption is of first order
- suppressing  $\psi_{P}$  preserves evaluator's prior bias
- this come at a cost for researcher: suppress  $\psi_{\rm A}$  too

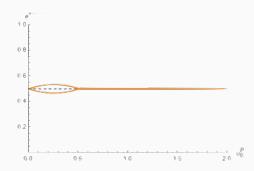
This continues to hold even if  $a_P = 1/2$ : median site is most informative for both researcher and evaluator



**Figure 8:**  $\mu(a_P)$  in *x*-axis and optimal site in *y*-axis. Parameter values:  $\ell = 1/2, \bar{\mu} = 1/2, a_P = 1/2$ .

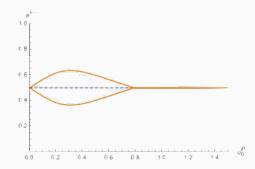
- ▶ Distortions even when  $a_A = a_P = 1/2$
- $\blacktriangleright\,$  Distortions vanish as  $\ell \to +\infty$  and  $\ell \to 0$
- ▶  $|a^* 1/2|$  single-peaked in  $\ell$

- Distortions even when  $a_A = a_P = 1/2$
- $\blacktriangleright$  Distortions vanish as  $\ell \to +\infty$  and  $\ell \to 0$
- ▶  $|a^* 1/2|$  single-peaked in  $\ell$



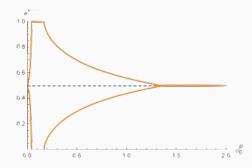
**Figure 9:**  $\mu(a_P)$  in x-axis and optimal site in y-axis. Parameter values:  $\ell = 10, \bar{\mu} = 1/2, a_P = 1/2.$ 

- Distortions even when  $a_A = a_P = 1/2$
- $\blacktriangleright$  Distortions vanish as  $\ell \to +\infty$  and  $\ell \to 0$
- ▶  $|a^* 1/2|$  single-peaked in  $\ell$



**Figure 9:**  $\mu(a_P)$  in x-axis and optimal site in y-axis. Parameter values:  $\ell = 1/2, \bar{\mu} = 1/2, a_P = 1/2.$ 

- Distortions even when  $a_A = a_P = 1/2$
- $\blacktriangleright$  Distortions vanish as  $\ell \to +\infty$  and  $\ell \to 0$
- ▶  $|a^* 1/2|$  single-peaked in  $\ell$



**Figure 9:**  $\mu(a_P)$  in *x*-axis and optimal site in *y*-axis. Parameter values:  $\ell = 1/5, \bar{\mu} = 1/2, a_P = 1/2.$ 

- Distortions even when  $a_A = a_P = 1/2$
- $\blacktriangleright$  Distortions vanish as  $\ell \to +\infty$  and  $\ell \to 0$
- ▶  $|a^* 1/2|$  single-peaked in  $\ell$

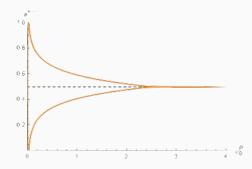


Figure 9:  $\mu(a_P)$  in x-axis and optimal site in y-axis. Parameter values:  $\ell = 1/10, \bar{\mu} = 1/2, a_P = 1/2.$ 

# Concluding remarks

Flexible framework for modeling selective sampling of attributes

- selective learning: simple informativeness index for identifying the single-player sample
- 2. influence:

taxonomy of distortions due to the sample controlling both learning and alignment of players

Tractable and novel learning framework to further address:

- Partial / targeted adoption
  - $\cdot$  the attribute problem is inherently one of full scale or no adoption
  - · adoption of a strict subset of attributes upon inspection
  - bridge between problems of search and attribute sampling
- Aggregation of local knowledge
  - constrained access to attribute realizations (site outcomes)
  - sites / attributes need to be incentivized to collect and/or impart local information

# Thank you!

# Centrality of a sample

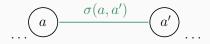
Heuristic construction: centrality of a sample in the attribute graph

- $\cdot$  without loss,  $\omega(a) \geq 0$  for all  $a \in \mathcal{A}$
- reminder: weights add to up
- $\cdot \sigma(a,a) = 1$  for all  $a \in \mathcal{A}$

# Centrality of a sample

Heuristic construction: centrality of a sample in the attribute graph

- $\cdot$  without loss,  $\omega(a) \geq 0$  for all  $a \in \mathcal{A}$
- reminder: weights add to up
- $\sigma(a,a) = 1$  for all  $a \in \mathcal{A}$
- ▶ Infinite weighted graph  $\mathcal{G}(\mathcal{A}, E)$  with
  - attributes as nodes
  - edge weight  $e_{aa'} = \sigma(a, a')$



# Centrality of a sample

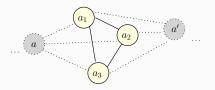
Heuristic construction: centrality of a sample in the attribute graph

- without loss,  $\omega(a) \geq 0$  for all  $a \in \mathcal{A}$
- reminder: weights add to up
- $\sigma(a,a) = 1$  for all  $a \in \mathcal{A}$
- ▶ Infinite weighted graph  $\mathcal{G}(\mathcal{A}, E)$  with
  - attributes as nodes
  - edge weight  $e_{aa'} = \sigma(a, a')$

$$a - \sigma(a, a') - a' - a'$$

•  $\mathcal{G}_a$ : subgraph consisting of nodes **a** and edges within

# Sample centrality



Sample centrality is a function

$$\gamma: \bigcup_{k \in \mathbb{N}} \mathcal{A}_k \to \mathbb{R}$$

equal to

- the sum of walks of any length ...
- from a random node  $a \in \mathcal{A} \dots$
- to another random node  $a'\ldots$
- drawn according to density  $\omega(a)\omega(a')\ldots$
- $\cdot$  such that all intermediate nodes in each walk are in  $\mathcal{G}_a.$

Akin to betweenness centrality for non-singleton sets of nodes.

#### Theorem (Sample centrality of a single-player sample)

- (i) For any sample a for which G is a-walk-summable, its sample centrality is equal to the posterior variance that the sample induces, i.e. γ(a) = ψ<sup>2</sup>(a).
- (ii) Fix capacity k, and suppose G is k-walk-summable. Any single-player sample attains the highest sample centrality.

#### Theorem (Sample centrality of a single-player sample)

- (i) For any sample a for which G is a-walk-summable, its sample centrality is equal to the posterior variance that the sample induces, i.e. γ(a) = ψ<sup>2</sup>(a).
- (ii) Fix capacity k, and suppose G is k-walk-summable. Any single-player sample attains the highest sample centrality.

If walk-summability fails, we modify it through path-summability

- $\cdot$  (finite-length) paths instead of walks within  $\mathcal{G}_a$
- $\cdot$  well-defined for any positive definite covariance  $\sigma$

### Proposition (Joint suppression of informativeness)

- (1) An optimal sample is dominated only if players are in prior agreement.
- (2) If all the following hold:
  - (i) the players are in prior agreement,
  - (ii) there exists at least one sample  $a \in A_k$  such that  $\rho(a) > 0$ ,
  - (iii) at any  $\alpha_2$ -maximal feasible sample, there exists a sample arbitrarily close to it that is dominated by it

then there exist  $\bar{x}^P$  and  $\underline{x}^A < \bar{x}^A$  such that for  $|\nu_0^P - r_P| \leq \bar{x}^P$  and  $\underline{x}^A \leq |\nu_0^A - r_A| \leq \bar{x}^P$  any optimal sample  $\mathbf{a}^*$  is dominated and has  $\alpha_1(\mathbf{a}^*) > 0$ .

### Proposition (Influence via controversial sampling)

- (i) A controversial sample is optimal only if players are in prior disagreement.
- (ii) When in prior disagreement, agent forgoes informative sampling if and only if all feasible samples are controversial and  $\rho(\mathbf{a})$  is sufficiently negative for all  $\mathbf{a} \in \mathcal{A}_k$ .
- (iii) If the optimal sample  $\mathbf{a}^*$  is controversial, then for any feasible non-controversial sample  $\mathbf{a}$ ,  $\psi_P(\mathbf{a}^*) > \psi_P(\mathbf{a})$ .

