Attributes

Selective Learning and Influence

Arjada Bardhi ${ }^{1}$
PennTheoN, April 2020
${ }^{1}$ Duke University

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

a_{1}

a_{2}

a_{3}

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

a_{1}

a_{2}

a_{3}

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

a_{1}

a_{2}

a_{3}

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

$$
\text { expected value }=\omega_{1} \cdot x_{1}+\omega_{2} \cdot \mathbb{E}\left[x_{2} \mid x_{1}, x_{3}\right]+\omega_{3} \cdot x_{3}
$$

Attribute sampling

This paper revisits a fundamental learning problem:

- agent considers the adoption of an object of uncertain value
- object characterized by a mass of correlated attributes
- value for the object depends on the sum of attribute realizations
- agent might have some benchmark knowledge
- limited sampling opportunities for additional attributes

Examples:

- appraising a multi-attribute product before purchase
- evaluating skill bundle of a potential employee
- gauging the spatial impact of a social program

Attribute sampling

Selective exploration of attributes has a long tradition in economics. Attribute-based demand: Lancaster (1966), Keeney and Raiffa (1976) Independent attributes: Neeman (1995), Klabjan, Olszewski, and Wolinsky (2014), Sanjurjo (2017)

Our attribute sampling problem significantly differs from the standard:

- search problem
- multi-armed bandit problem

Attribute sampling

Selective exploration of attributes has a long tradition in economics. Attribute-based demand: Lancaster (1966), Keeney and Raiffa (1976) Independent attributes: Neeman (1995), Klabjan, Olszewski, and Wolinsky (2014), Sanjurjo (2017)

Our attribute sampling problem significantly differs from the standard:

- search problem
- multi-armed bandit problem

This paper:

1. Optimal attribute sampling in the absence of agency conflict
2. Distortions in sampling in the presence of agency conflict

- separate authorities over sampling and adoption
- different weighting of attributes and/or outside option

Site selection in program evaluation

Selection of pilot sites as attribute sampling

- N target sites (N large)
- sites ordered according to observable characteristics
- program outcomes differ across sites
- learning through small-scale pilot studies ($k \ll N$)
- program scale-up desirable if average outcome is high
- which sites should be selected for pilot testing?

Site selection in program evaluation

Selection of pilot sites as attribute sampling

- N target sites (N large)
- sites ordered according to observable characteristics
- program outcomes differ across sites
- learning through small-scale pilot studies ($k \ll N$)
- program scale-up desirable if average outcome is high
- which sites should be selected for pilot testing?

Site selection in program evaluation

Empirical Concern:

Low generalizability of pilot findings in impact evaluations

- Allcott (2015), Bold et al. (2018), Vivalt (2020)
- game between a utilitarian researcher and a partisan evaluator
- sufficient statistic for generalizability
- reasonable benchmark for generalizability
- we show the optimal pilot site of low generalizability for both the researcher and the evaluator

Gaussian framework

We model the attribute mapping as a realization of a Gaussian process

- flexible modeling of correlated attributes
- learning over the space of Gaussian sample paths
- covariance function as a similarity metric over pairs of attributes
- how much can be extrapolated from one attribute to another

The analysis hinges on two key assumptions:

1. Jointly Gaussian attributes
2. Rich attribute space

Gaussian framework

Figure 1: Sample paths of a Gaussian process

Preview of results

1. In the single-player benchmark, the optimal sample

- maximizes a single informativeness statistic
- sample balances generalizability to out-of-sample attributes with non-redundancy within sample
- maximally central in a corresponding attribute graph
- is independent of expected value of attributes/project
- is independent of timing format (sequential vs. simultaneous)

Preview of results

2. When agent samples and principal adopts:

- the value of a sample hinges on two informativeness statistics, one for each player
- prior agreement between players brings
- suppression of informativeness for both players
- controversial sampling
- distortions in sample size, content, and delay

Model

Players and timing

- Two players: principal (P) and agent (A)
- Players jointly evaluate a multi-attribute project of unknown quality
- Separate authorities:
$t=1$: A samples attributes
$t=2: P$ decides whether to adopt
- Sample observations revealed publicly
- symmetrically informed players
- no contracting
- Formats of sampling contrasted
(i) simultaneous
(ii) sequential

Attributes

- Attributes $a \in \mathcal{A}:=[0,1]$
- Unknown mapping $f: \mathcal{A} \rightarrow \mathbb{R}$ determines attribute realizations
- f drawn from the space of sample paths of a Gaussian process

$$
f \sim \mathcal{G P}(\mu, \sigma)
$$

where prior mean μ and symmetric positive definite covariance σ :

$$
\begin{aligned}
& \mu: \mathcal{A} \rightarrow \mathbb{R} \\
& \sigma: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}
\end{aligned}
$$

Attributes

- Attributes $a \in \mathcal{A}:=[0,1]$
- Unknown mapping $f: \mathcal{A} \rightarrow \mathbb{R}$ determines attribute realizations
- f drawn from the space of sample paths of a Gaussian process

$$
f \sim \mathcal{G P}(\mu, \sigma)
$$

where prior mean μ and symmetric positive definite covariance σ :

$$
\begin{aligned}
& \mu: \mathcal{A} \rightarrow \mathbb{R} \\
& \sigma: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R} \\
& \mu(a)=\mathbb{E}[f(a)], \quad \sigma\left(a, a^{\prime}\right)=\mathbb{E}\left[(f(a)-\mu(a))\left(f\left(a^{\prime}\right)-\mu\left(a^{\prime}\right)\right)\right]
\end{aligned}
$$

Attributes

- Attributes $a \in \mathcal{A}:=[0,1]$
- Unknown mapping $f: \mathcal{A} \rightarrow \mathbb{R}$ determines attribute realizations
- f drawn from the space of sample paths of a Gaussian process

$$
f \sim \mathcal{G P}(\mu, \sigma)
$$

where prior mean μ and symmetric positive definite covariance σ :

$$
\begin{aligned}
& \mu: \mathcal{A} \rightarrow \mathbb{R} \\
& \sigma: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}
\end{aligned}
$$

- (μ, σ) perfectly known by both players
- $\sigma\left(a, a^{\prime}\right)$ similarity metric among attribute pair (a, a^{\prime})

Attributes

- Attributes $a \in \mathcal{A}:=[0,1]$
- Unknown mapping $f: \mathcal{A} \rightarrow \mathbb{R}$ determines attribute realizations
- f drawn from the space of sample paths of a Gaussian process

$$
f \sim \mathcal{G P}(\mu, \sigma)
$$

where prior mean μ and symmetric positive definite covariance σ :

$$
\begin{aligned}
& \mu: \mathcal{A} \rightarrow \mathbb{R} \\
& \sigma: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{R}
\end{aligned}
$$

- (μ, σ) perfectly known by both players
- $\sigma\left(a, a^{\prime}\right)$ similarity metric among attribute pair (a, a^{\prime})

Assumption (Continuity of sample paths)
Almost surely any realization of f is continuous.

Attributes

Brownian motion is a Gaussian process.

Figure 2: Brownian motion: $\mu=2 a, \sigma\left(a, a^{\prime}\right)=\min \left(a, a^{\prime}\right)$

Sampling

Finite distribution: For any k-sample of attributes $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$

$$
f(\mathrm{a}):=\left(\begin{array}{c}
f\left(a_{1}\right) \\
\vdots \\
f\left(a_{k}\right)
\end{array}\right) \sim \mathcal{N}(\underbrace{\left(\begin{array}{c}
\mu\left(a_{1}\right) \\
\vdots \\
\mu\left(a_{k}\right)
\end{array}\right)}_{\mu(\mathrm{a})}, \underbrace{\left(\begin{array}{ccc}
\sigma\left(a_{1}, a_{1}\right) & \ldots & \sigma\left(a_{1}, a_{k}\right) \\
\vdots & \ddots & \vdots \\
\sigma\left(a_{k}, a_{1}\right) & \ldots & \sigma\left(a_{k}, a_{k}\right)
\end{array}\right)}_{\Sigma(\mathrm{a})})
$$

If a drawn, $f(a)$ observed perfectly by both players
\mathcal{A}_{k} is the set of non-redundant samples of size at most k :
$\mathcal{A}_{k}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}^{n}, \forall n \leq k, n \in \mathbb{N} \mid \Sigma\left(\left(a_{1}, \ldots, a_{n}\right)\right)\right.$ is non-singular $\}$

Payoffs

Cost of sampling exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$
c(n)= \begin{cases}0 & \text { if } n \leq k \\ +\infty & \text { otherwise }\end{cases}
$$

Rejection payoff heterogenous payoffs from status quo $\left(r_{A}, r_{P}\right) \in \mathbb{R}^{2}$ Adoption payoff player i obtains ex-post payoff

$$
v_{i}=\int_{\mathcal{A}} f(a) \omega_{i}(a) \mathrm{d} a
$$

where $\omega_{i}: \mathcal{A} \rightarrow \mathbb{R}$ is a Lebesgue-integrable attribute weight function for player i

Payoffs

Cost of sampling exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$
c(n)= \begin{cases}0 & \text { if } n \leq k \\ +\infty & \text { otherwise }\end{cases}
$$

Rejection payoff heterogenous payoffs from status quo $\left(r_{A}, r_{P}\right) \in \mathbb{R}^{2}$
Adoption payoff player i obtains ex-post payoff

$$
v_{i}=\int_{\mathcal{A}} f(a) \omega_{i}(a) \mathrm{d} a
$$

where $\omega_{i}: \mathcal{A} \rightarrow \mathbb{R}$ is a Lebesgue-integrable attribute weight function for player i

Without loss, for both players

$$
\int_{\mathcal{A}} \omega_{i}(a) \mathrm{d} a=1 .
$$

In the single-player benchmark we normalize $\omega(\cdot) \geq 0$.

Payoffs

Cost of sampling exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$
c(n)= \begin{cases}0 & \text { if } n \leq k \\ +\infty & \text { otherwise }\end{cases}
$$

Rejection payoff heterogenous payoffs from status quo $\left(r_{A}, r_{P}\right) \in \mathbb{R}^{2}$
Adoption payoff player i obtains ex-post payoff

$$
v_{i}=\int_{\mathcal{A}} f(a) \omega_{i}(a) \mathrm{d} a
$$

where $\omega_{i}: \mathcal{A} \rightarrow \mathbb{R}$ is a Lebesgue-integrable attribute weight function for player i

Player i's prior value from the project

$$
\nu_{0}^{i}:=\mathbb{E}\left[v_{i}\right]=\int_{\mathcal{A}} \mu(a) \omega_{i}(a) \mathrm{d} a
$$

Payoffs

Cost of sampling exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$
c(n)= \begin{cases}0 & \text { if } n \leq k \\ +\infty & \text { otherwise }\end{cases}
$$

Rejection payoff heterogenous payoffs from status quo $\left(r_{A}, r_{P}\right) \in \mathbb{R}^{2}$
Adoption payoff player i obtains ex-post payoff

$$
v_{i}=\int_{\mathcal{A}} f(a) \omega_{i}(a) \mathrm{d} a
$$

where $\omega_{i}: \mathcal{A} \rightarrow \mathbb{R}$ is a Lebesgue-integrable attribute weight function for player i

$$
v_{i} \sim \mathcal{N}(\nu_{0}^{i}, \quad \underbrace{\int_{\mathcal{A}} \int_{\mathcal{A}} \sigma\left(a, a^{\prime}\right) \omega(a) \omega\left(a^{\prime}\right) \mathrm{d} a \mathrm{~d} a^{\prime}}_{\text {aggregate uncertainty about the project }})
$$

Payoffs

Figure 3: v^{i} depicted in yellow and ν_{0}^{i} in red if $\omega_{i}(a)=1$ for all $a \in[0,1]$

Payoffs

Cost of sampling exogenous (finite) sampling capacity $k \in \mathbb{N}$

$$
c(n)= \begin{cases}0 & \text { if } n \leq k \\ +\infty & \text { otherwise }\end{cases}
$$

Rejection payoff heterogenous payoffs from status quo $\left(r_{A}, r_{P}\right) \in \mathbb{R}^{2}$
Adoption payoff player i obtains ex-post payoff

$$
v_{i}=\int_{\mathcal{A}} f(a) \omega_{i}(a) \mathrm{d} a
$$

where $\omega_{i}: \mathcal{A} \rightarrow \mathbb{R}$ is a Lebesgue-integrable attribute weight function for player i

Sources of conflict:

1. relative importance of attributes $\left(\omega_{P}, \omega_{A}\right)$
2. threshold on adoption $\left(r_{A}, r_{P}\right)$

Prior disagreement

Definition

Players are in prior disagreement about the project's initial worth if $\left(v_{0}^{P}-r_{P}\right)$ and $\left(v_{0}^{A}-r_{A}\right)$ have opposite signs.
They are in prior agreement otherwise.

Prior disagreement

Definition

Players are in prior disagreement about the project's initial worth if $\left(v_{0}^{P}-r_{p}\right)$ and $\left(v_{0}^{A}-r_{A}\right)$ have opposite signs.
They are in prior agreement otherwise.

- In the absence of any sampling, prior disagreement implies that players favor different adoption decision.

Underdetermination by data

Assumption
Fix $k \in \mathbb{N}$. For any $\mathrm{a} \in \mathcal{A}_{k}$, any realization $f(\mathrm{a})$, and at least some player,

$$
\operatorname{Var}\left[v_{i} \mid a, f(a)\right]>0
$$

Out-of-sample extrapolation

Lemma (Extrapolation)

Fix a sample $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ with respective realizations $f(\mathrm{a})$ and attribute $\hat{a} \in \mathcal{A}$. The expected realization $f(\hat{a})$ is given by

$$
\mathbb{E}[f(\hat{a}) \mid \mathbf{a}, f(\mathrm{a})]=\mu(\hat{a})+\sum_{j=1}^{k} \tau_{j}(\hat{a} ; \mathbf{a})\left(f\left(a_{j}\right)-\mu\left(a_{j}\right)\right)
$$

where $\tau_{j}(\hat{a} ; a)$, its sensitivity to observation $f\left(a_{j}\right)$, is the $(1, j)^{\text {th }}$ entry of matrix

$$
\left(\begin{array}{lll}
\sigma\left(a_{1}, \hat{a}\right) & \ldots & \left.\sigma\left(a_{k}, \hat{a}\right)\right) \Sigma^{-1}(\mathrm{a}) .
\end{array}\right.
$$

Out-of-sample extrapolation

Lemma (Extrapolation)

Fix a sample $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ with respective realizations $f(\mathrm{a})$ and attribute $\hat{a} \in \mathcal{A}$. The expected realization $f(\hat{a})$ is given by

$$
\mathbb{E}[f(\hat{a}) \mid \mathrm{a}, f(\mathrm{a})]=\mu(\hat{a})+\sum_{j=1}^{k} \tau_{j}(\hat{a} ; \mathrm{a})\left(f\left(a_{j}\right)-\mu\left(a_{j}\right)\right)
$$

where $\tau_{j}(\hat{a} ; a)$, its sensitivity to observation $f\left(a_{j}\right)$, is the $(1, j)^{\text {th }}$ entry of matrix

$$
\left(\begin{array}{lll}
\sigma\left(a_{1}, \hat{a}\right) & \ldots & \left.\sigma\left(a_{k}, \hat{a}\right)\right) \Sigma^{-1}(\mathrm{a}) .
\end{array}\right.
$$

- predicted realization for any attribute is a linear combination of sample realizations
- $\tau\left(\hat{a} ; a_{j}\right) \equiv$ extent to which $f\left(a_{j}\right)$ contributes to the guess for $f(\hat{a})$
- exact shape of extrapolation depends on covariance σ

Examples: $\mu(a)=0, \mathrm{a}=(1 / 5,2 / 5,3 / 5,4 / 5)$

Let's see a few examples of extrapolation from a sample.

Figure 4: Brownian: $\sigma\left(a, a^{\prime}\right)=\min \left(a, a^{\prime}\right)$

Examples: $\mu(a)=0, \mathrm{a}=(1 / 5,2 / 5,3 / 5,4 / 5)$

Let's see a few examples of extrapolation from a sample.

Figure 4: Ornstein-Uhlenbeck: $\sigma\left(a, a^{\prime}\right)=e^{-\left|a-a^{\prime}\right| / \ell}, \ell=1 / 20$

Examples: $\mu(a)=0, \mathrm{a}=(1 / 5,2 / 5,3 / 5,4 / 5)$

Let's see a few examples of extrapolation from a sample.

Figure 4: Squared exponential: $\sigma\left(a, a^{\prime}\right)=e^{-\left(a-a^{\prime}\right)^{2} / \ell^{2}}, \ell=1 / 20$

Examples: $\mu(a)=0, \mathrm{a}=(1 / 5,2 / 5,3 / 5,4 / 5)$

Let's see a few examples of extrapolation from a sample.

Figure 4: Polynomial: $\sigma\left(a, a^{\prime}\right)=\left(1+a a^{\prime}\right)^{10}$

Posterior value

Lemma

Fix sample $\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right)$ with respective realizations $f(\mathrm{a})$. Player i's posterior value is a linear combination of sample realizations, i.e.

$$
\nu^{i}(\mathrm{a}, f(\mathrm{a}))=\nu_{0}^{i}+\sum_{j=1}^{k} \tau_{j}^{i}(\mathrm{a})\left(f\left(a_{j}\right)-\mu\left(a_{j}\right)\right)
$$

where realization $f\left(a_{j}\right)$ is weighted by

$$
\tau_{j}^{i}(\mathrm{a}):=\int_{\mathcal{A}} \tau_{j}(a ; \mathrm{a}) \omega_{i}(a) \mathrm{d} a
$$

and $\tau_{j}(a ; \mathbf{a})$ is as above.

- sensitivity of posterior to $f\left(a_{j}\right)$ aggregates sensitivity of the entire extrapolated mapping to it

Related work

1. Attribute discovery and selective information gathering: Neeman (1995), Branco, Sun and Villas-Boas (2012), Klabjan, Olszewski, Wolinsky (2014), Olszewski and Wolinsky (2016), Sanjurjo (2017), Che and Mierendorff (2017), Liang, Mu, Syrgkanis (2020)
2. Learning and experimentation over Gaussian paths: Jovanovic and Rob (1990), Aghion, Bolton, Harris, and Jullien (1991), Callander (2011), Callander and Hummel (2014), Garfagnini and Strulovici (2016), Ilut and Valchev (2017)
3. Persuasion through constrained experimental design: Glazer and Rubinstein (2004), Brocas and Carrillo (2007), Rayo and Segal (2010), Hirsch (2016), Banerjee, Chassang, Montero, Snowberg (2017), Di Tillio, Ottaviani, Sorensen (2017)
4. GPs in geostatistics and machine learning: Matheron (1963, 1967), Chilés and Delfiner (2012), Rasmussen and Williams (2006)

Relation to Callander (2011)

- Payoff structure: finding a maximum vs. estimating the area
- Gaussian process approach allows us to bypass invoking the Brownian bridge

I. Single-player sampling

Ranking of samples

- Benchmark for optimal sampling in the absence of conflict
- index i dropped

Ranking of samples

- Benchmark for optimal sampling in the absence of conflict
- index i dropped
- For any sample $\mathbf{a} \in \mathcal{A}_{k}$, posterior $\nu(\mathrm{a}, f(\mathrm{a}))$ is centered at

$$
\nu_{0}=\int_{0}^{1} \mu(a) \omega(a) d a
$$

- Posterior value is Gaussian

$$
\nu(\mathrm{a}, f(\mathrm{a})) \sim \mathcal{N}\left(\nu_{0}, \psi^{2}(\mathrm{a})\right)
$$

- $f(a)$ does not enter posterior variance $\psi^{2}(a)$
- Samples ranked according to ψ^{2} (a)

Ranking of samples

- Benchmark for optimal sampling in the absence of conflict
- index i dropped
- For any sample $\mathbf{a} \in \mathcal{A}_{k}$, posterior $\nu(\mathrm{a}, f(\mathrm{a}))$ is centered at

$$
\nu_{0}=\int_{0}^{1} \mu(a) \omega(a) d a
$$

- Posterior value is Gaussian

$$
\nu(\mathrm{a}, f(\mathrm{a})) \sim \mathcal{N}\left(\nu_{0}, \psi^{2}(\mathrm{a})\right)
$$

- $f(a)$ does not enter posterior variance $\psi^{2}(a)$
- Samples ranked according to ψ^{2} (a)
- Agent's expected payoff from sample a:

$$
V(\mathrm{a})=r+\left(\nu_{0}-r\right) \Phi\left(\frac{\nu_{0}-r}{\psi(\mathrm{a})}\right)+\psi(\mathrm{a}) \phi\left(\frac{\nu_{0}-r}{\psi(\mathrm{a})}\right)
$$

\checkmark strictly increasing and convex in ψ

Ranking of samples

- Benchmark for optimal sampling in the absence of conflict
- index i dropped
- For any sample $\mathbf{a} \in \mathcal{A}_{k}$, posterior $\nu(\mathrm{a}, f(\mathrm{a}))$ is centered at

$$
\nu_{0}=\int_{0}^{1} \mu(a) \omega(a) d a
$$

- Posterior value is Gaussian

$$
\nu(\mathrm{a}, f(\mathrm{a})) \sim \mathcal{N}\left(\nu_{0}, \psi^{2}(\mathrm{a})\right)
$$

- $f(a)$ does not enter posterior variance $\psi^{2}(a)$
- Samples ranked according to ψ^{2} (a)
- Agent's expected payoff from sample a:

$$
V(\mathrm{a})=r+\left(\nu_{0}-r\right) \Phi\left(\frac{\nu_{0}-r}{\psi(\mathrm{a})}\right)+\psi(\mathrm{a}) \phi\left(\frac{\nu_{0}-r}{\psi(\mathrm{a})}\right)
$$

\checkmark strictly increasing and convex in ψ

Optimal sampling

Theorem (Single-player sampling)

Fix $k \in \mathbb{N}$. Any single-player sample a*
(i) consists of k distinct attributes;
(ii) maximizes posterior variance $\psi^{2}(\cdot)$, given by

$$
\mathrm{a}^{*} \in \arg \max _{\mathrm{a} \in \mathcal{A}_{k}} \sum_{j=1}^{k} \sum_{m=1}^{k} \tau_{j}(\mathrm{a}) \tau_{m}(\mathrm{a}) \sigma\left(a_{j}, a_{m}\right):=\psi^{2}(\mathrm{a}) ;
$$

(iii) is independent of μ, ν_{0}, and r.

Optimal sampling

Theorem (Single-player sampling)
Fix $k \in \mathbb{N}$. Any single-player sample a*
(i) consists of k distinct attributes;
(ii) maximizes posterior variance $\psi^{2}(\cdot)$, given by

$$
\mathrm{a}^{*} \in \arg \max _{\mathrm{a} \in \mathcal{A}_{k}} \sum_{j=1}^{k} \sum_{m=1}^{k} \tau_{j}(\mathrm{a}) \tau_{m}(\mathrm{a}) \sigma\left(a_{j}, a_{m}\right):=\psi^{2}(\mathrm{a}) ;
$$

(iii) is independent of μ, ν_{0}, and r.

- only covariance and attribute weights enter into ψ
- two attributes reinforce each other in the sample if

$$
\tau_{j}(\mathrm{a}) \tau_{m}(\mathrm{a}) \sigma\left(a_{j}, a_{m}\right)>0
$$

Optimal sampling

Theorem (Single-player sampling)
Fix $k \in \mathbb{N}$. Any single-player sample a*
(i) consists of k distinct attributes;
(ii) maximizes posterior variance $\psi^{2}(\cdot)$, given by

$$
\mathbf{a}^{*} \in \arg \max _{\mathrm{a} \in \mathcal{A}_{k}} \sum_{j=1}^{k} \sum_{m=1}^{k} \tau_{j}(\mathrm{a}) \tau_{m}(\mathrm{a}) \sigma\left(a_{j}, a_{m}\right):=\psi^{2}(\mathbf{a})
$$

(iii) is independent of μ, ν_{0}, and r.

Proposition (Equivalence of sampling formats)
A sample is optimal under sequential sampling of attributes if and only if it is optimal under simultaneous sampling.

Site selection: Researcher's benchmark

Implications for site selection

Let us reinterpret attributes as sites and f as outcome of the program.
A utilitarian researcher weighs all sites equally:

$$
\omega_{A}(a)=1 \quad \forall a \in[0,1]
$$

Which sites would the researcher select if in charge of program adoption as well?

1. Site selection is unbiased from expected outcomes
2. $\psi(\mathrm{a})$ as a measure of external validity of sample sites a
3. Timing of pilots is immaterial: early vs. late pilots

Distance-based covariance

Suppose site outcomes are correlated according to

$$
\sigma_{\text {OU }}\left(a, a^{\prime}\right)=e^{-\left|a-a^{\prime}\right| / \ell}
$$

where ℓ is a length-scale parameter.
We normalize $\mu(a)=0$ for all $a \in[0,1]$.

Distance-based covariance

Suppose site outcomes are correlated according to

$$
\sigma_{\text {OU }}\left(a, a^{\prime}\right)=e^{-\left|a-a^{\prime}\right| / \ell}
$$

where ℓ is a length-scale parameter.
We normalize $\mu(a)=0$ for all $a \in[0,1]$.

- distance-based covariance
- ℓ measures correlation across a fixed distance
- $\ell \rightarrow 0$: independent outcomes
- $\ell \rightarrow+\infty$: perfectly correlated outcomes
- all site outcomes are ex ante identical

$$
f(a) \sim \mathcal{N}(0,1) \quad \text { for all } a \in[0,1]
$$

Distance-based covariance

Suppose site outcomes are correlated according to

$$
\sigma_{\text {OU }}\left(a, a^{\prime}\right)=e^{-\left|a-a^{\prime}\right| / \ell}
$$

where ℓ is a length-scale parameter.
We normalize $\mu(a)=0$ for all $a \in[0,1]$.

Distance-based covariance

Suppose site outcomes are correlated according to

$$
\sigma_{\text {OU }}\left(a, a^{\prime}\right)=e^{-\left|a-a^{\prime}\right| / \ell}
$$

where ℓ is a length-scale parameter.
We normalize $\mu(a)=0$ for all $a \in[0,1]$.
This covariance is highly tractable \Rightarrow closed-form $\tau_{j}(\mathrm{a})$ and $\psi^{2}(\mathrm{a})$
The researcher's optimal sample:

- unique and symmetric around the median site $1 / 2$
- each sample site is weighted equally
- more dispersed as correlation strengthens (i.e., $\ell \uparrow$)
- leftmost site pinned down by

$$
1-e^{-a_{1}^{*} / \ell}=\tanh \left(\frac{1-2 a_{1}^{*}}{2 \ell(k-1)}\right)
$$

Varying ℓ

Figure 5: The researcher's sample illustrated for $k \in\{1, \ldots, 5\}$ (bottom up) and $\ell=1, \ell=1 / 2, \ell=1 / 5, \ell=1 / 20$.

Varying ℓ

Figure 5: The researcher's sample illustrated for $k \in\{1, \ldots, 5\}$ (bottom up) and $\ell=1, \ell=1 / 2, \ell=1 / 5, \ell=1 / 20$.

As sites become independent ($\ell \rightarrow 0$), sample converges to

$$
\left(\frac{1}{k+1}, \ldots, \frac{k}{k+1}\right)
$$

Varying ℓ

Figure 5: The researcher's sample illustrated for $k \in\{1, \ldots, 5\}$ (bottom up) and $\ell=1, \ell=1 / 2, \ell=1 / 5, \ell=1 / 20$.

As sites become perfectly correlated $(\ell \rightarrow+\infty)$, sample converges to

$$
\left(\frac{1}{2 k}, \ldots, \frac{2 k-1}{2 k}\right)
$$

Sample centrality

Centrality of a sample

In the previous example, the optimal sample is central in $[0,1]$.
Is there a formal sense in which the optimal sample is most central in the attribute space for any (ω, σ) ?

Centrality of a sample

In the previous example, the optimal sample is central in $[0,1]$.
Is there a formal sense in which the optimal sample is most central in the attribute space for any (ω, σ) ?

- Yes, the optimal sample maximizes sample centrality
- Generalization of betweenness centrality to sets of nodes

Centrality of a sample

In the previous example, the optimal sample is central in $[0,1]$.
Is there a formal sense in which the optimal sample is most central in the attribute space for any (ω, σ) ?

- Yes, the optimal sample maximizes sample centrality
- Generalization of betweenness centrality to sets of nodes
- expected walk sum from a random attribute a to another a^{\prime} such that each walk traverses sample attributes only
- random pair (a, a^{\prime}) drawn according to density $\omega(a) \omega\left(a^{\prime}\right)$

Figure 6: Sample $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$
II. Principal - agent sampling

Agent's payoff

- Prior disagreement: $\left(\nu_{0}^{A}-r_{A}, \nu_{0}^{P}-r_{P}\right)$
- Upon sampling (a, $f(\mathrm{a}))$ principal adopts iff

$$
\nu^{P}(\mathrm{a}, f(\mathrm{a})) \geq r_{P}
$$

- $\rho(\mathrm{a}) \equiv$ correlation of posteriors $\nu^{P}(\mathrm{a})$ and $\nu^{A}(\mathrm{a})$
- If ω_{i} is the same for both players, $\rho(\mathrm{a})=1$ for any sample a

Agent's payoff

- Prior disagreement: $\left(\nu_{0}^{A}-r_{A}, \nu_{0}^{P}-r_{P}\right)$
- Upon sampling (a, $f(\mathrm{a}))$ principal adopts iff

$$
\nu^{P}(\mathrm{a}, f(\mathrm{a})) \geq r_{P}
$$

- $\rho(\mathrm{a}) \equiv$ correlation of posteriors $\nu^{P}(\mathrm{a})$ and $\nu^{A}(\mathrm{a})$
- If ω_{i} is the same for both players, $\rho(\mathrm{a})=1$ for any sample a

Agent's expected payoff from a

$$
r_{A}+\underbrace{\operatorname{Pr}\left(\nu^{P}(\mathrm{a}) \geq r_{P}\right)}_{\text {probability of adoption }} \cdot(\underbrace{\mathbb{E}\left[\nu^{A}(\mathrm{a}) \mid \nu^{P}(\mathrm{a}) \geq r_{P}\right]}_{\text {inference from adoption }}-r_{A})
$$

Agent's payoff

Theorem (Sufficient statistics for a sample)
For any sample a, the agent's expected payoff depends on a only through the pair of sufficient statistics

$$
\left(\alpha_{1}(\mathrm{a}), \alpha_{2}(\mathrm{a})\right):=\left(\psi_{P}(\mathrm{a}), \quad \rho(\mathrm{a}) \psi_{A}(\mathrm{a})\right)
$$

where ψ_{i} denotes posterior variance for player i. All else fixed, his payoff is strictly increasing in α_{2}.

Agent's payoff

Theorem (Sufficient statistics for a sample)
For any sample a, the agent's expected payoff depends on a only through the pair of sufficient statistics

$$
\left(\alpha_{1}(\mathrm{a}), \alpha_{2}(\mathrm{a})\right):=\left(\psi_{P}(\mathrm{a}), \quad \rho(\mathrm{a}) \psi_{A}(\mathrm{a})\right)
$$

where ψ_{i} denotes posterior variance for player i. All else fixed, his payoff is strictly increasing in α_{2}.

Pair (α_{1}, α_{2}) summarizes how informative \mathbf{a} is for each player.

- $\alpha_{1}(\mathrm{a})$: how informative is the sample in single-principal benchmark
- $\alpha_{2}(\mathrm{a})$: how informative is adoption for the agent
- informativeness ψ_{A} adjusted by correlation ρ
- its sign same as the sign of ρ
- share of the posterior variance for the agent that gets reflected in the adoption decision

Agent's payoff

Agent's expected payoff from sample a

$$
r_{A}+\underbrace{\left(\nu_{0}^{A}-r_{A}\right) \Phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption probability }}+\underbrace{\alpha_{2}(\mathrm{a}) \phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption accuracy }}
$$

Agent's payoff

Agent's expected payoff from sample a

$$
r_{A}+\underbrace{\left(\nu_{0}^{A}-r_{A}\right) \Phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption probability }}+\underbrace{\alpha_{2}(\mathrm{a}) \phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption accuracy }}
$$

Adoption probability \nearrow in α_{1} iff prior disagreement

- e.g., suppose $\nu_{0}^{P}>r_{p}$
- more informative for principal \Rightarrow less adoption \Rightarrow preferred if $\nu_{0}^{A}<r_{A}$

Agent's payoff

Agent's expected payoff from sample a

$$
r_{A}+\underbrace{\left(\nu_{0}^{A}-r_{A}\right) \Phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption probability }}+\underbrace{\alpha_{2}(\mathrm{a}) \phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption accuracy }}
$$

Adoption accuracy \nearrow in α_{1} fixing $\alpha_{2}>0$

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: $\rho>0$

Tradeoff between the two considerations is pinned down by $\left(\nu_{0}^{A}, \nu_{0}^{P}\right)$.

Agent's payoff

Agent's expected payoff from sample a

$$
r_{A}+\underbrace{\left(\nu_{0}^{A}-r_{A}\right) \Phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption probability }}+\underbrace{\alpha_{2}(\mathrm{a}) \phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption accuracy }}
$$

Adoption accuracy \nearrow in α_{1} fixing $\alpha_{2}>0$

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: $\rho>0$

Tradeoff between the two considerations is pinned down by $\left(\nu_{0}^{A}, \nu_{0}^{P}\right)$.
Remark
Sequential sampling strictly preferred by the agent.

Agent's payoff

Agent's expected payoff from sample a

$$
r_{A}+\underbrace{\left(\nu_{0}^{\mathrm{A}}-r_{A}\right) \Phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption probability }}+\underbrace{\alpha_{2}(\mathrm{a}) \phi\left(\frac{\nu_{0}^{P}-r_{P}}{\alpha_{1}(\mathrm{a})}\right)}_{\text {adoption accuracy }}
$$

Adoption accuracy \nearrow in α_{1} fixing $\alpha_{2}>0$

- better informed principal implies better informed adoption decision
- this goes in agent's favor iff sample aligns their interests: $\rho>0$

Tradeoff between the two considerations is pinned down by $\left(\nu_{0}^{A}, \nu_{0}^{P}\right)$.

Remark

Under prior agreement, agent seeks to increase both statistics as much as possible.

Two distortions

1. Joint suppression of informativeness

Is it ever optimal to select a sample that is dominated in both informativeness statistics?

A sample $\mathrm{a} \in \mathcal{A}_{k}$ is dominated if there exists another $\mathrm{a}^{\prime} \in \mathcal{A}_{k}$ such that $\alpha_{i}\left(\mathrm{a}^{\prime}\right) \geq \alpha_{i}(\mathrm{a})$ with strict inequality for some $i=1,2$.

Two distortions

1. Joint suppression of informativeness

Is it ever optimal to select a sample that is dominated in both informativeness statistics?

A sample $\mathrm{a} \in \mathcal{A}_{k}$ is dominated if there exists another $\mathrm{a}^{\prime} \in \mathcal{A}_{k}$ such that $\alpha_{i}\left(\mathrm{a}^{\prime}\right) \geq \alpha_{i}(\mathrm{a})$ with strict inequality for some $i=1,2$.
2. Controversial sampling Is it ever optimal to set $\rho\left(\mathrm{a}^{*}\right)<0$ if positive-correlation samples are feasible?

Two distortions

1. Joint suppression of informativeness

Is it ever optimal to select a sample that is dominated in both informativeness statistics?

A sample $\mathrm{a} \in \mathcal{A}_{k}$ is dominated if there exists another $\mathrm{a}^{\prime} \in \mathcal{A}_{k}$ such that $\alpha_{i}\left(\mathrm{a}^{\prime}\right) \geq \alpha_{i}(\mathrm{a})$ with strict inequality for some $i=1,2$.
Prior agreement is necessary.
2. Controversial sampling

Is it ever optimal to set $\rho\left(\mathrm{a}^{*}\right)<0$ if positive-correlation samples are feasible?

Prior disagreement is necessary.

Two distortions

1. Joint suppression of informativeness

Is it ever optimal to select a sample that is dominated in both informativeness statistics?

A sample $\mathrm{a} \in \mathcal{A}_{k}$ is dominated if there exists another $\mathrm{a}^{\prime} \in \mathcal{A}_{k}$ such that $\alpha_{i}\left(\mathrm{a}^{\prime}\right) \geq \alpha_{i}(\mathrm{a})$ with strict inequality for some $i=1,2$.
Prior agreement is necessary.
Starkest when $\omega_{A}=\omega_{p}$.
2. Controversial sampling

Is it ever optimal to set $\rho\left(\mathrm{a}^{*}\right)<0$ if positive-correlation samples are feasible?

Prior disagreement is necessary.
Starkest when $\omega_{A}=-\omega_{p}$.

Two distortions

1. Joint suppression of informativeness

Is it ever optimal to select a sample that is dominated in both informativeness statistics?

A sample $\mathrm{a} \in \mathcal{A}_{k}$ is dominated if there exists another $\mathrm{a}^{\prime} \in \mathcal{A}_{k}$ such that $\alpha_{i}\left(\mathrm{a}^{\prime}\right) \geq \alpha_{i}(\mathrm{a})$ with strict inequality for some $i=1,2$.
Prior agreement is necessary.
Starkest when $\omega_{A}=\omega_{p}$.
2. Controversial sampling

Is it ever optimal to set $\rho\left(\mathrm{a}^{*}\right)<0$ if positive-correlation samples are feasible?

Prior disagreement is necessary.
Starkest when $\omega_{A}=-\omega_{p}$.

Site selection: Strategic suppression

Strategic site selection

- Covariance $\sigma_{\text {OU }}\left(a, a^{\prime}\right)$ for all $a, a^{\prime} \in[0,1]$
- Partisan evaluator P vs. utilitarian researcher A
- Site weights

$$
\omega_{P}(a)=\left\{\begin{array}{ll}
+\infty & \text { for } a=a_{P} \\
0 & \text { for } a \neq a_{P}
\end{array} \quad \omega_{A}(a)=1 \quad \forall a \in[0,1]\right.
$$

Strategic site selection

- Covariance $\sigma_{0 \cup}\left(a, a^{\prime}\right)$ for all $a, a^{\prime} \in[0,1]$
- Partisan evaluator P vs. utilitarian researcher A
- Site weights

$$
\omega_{P}(a)=\left\{\begin{array}{ll}
+\infty & \text { for } a=a_{P} \\
0 & \text { for } a \neq a_{P}
\end{array} \quad \omega_{A}(a)=1 \quad \forall a \in[0,1]\right.
$$

- Prior values of researcher and evaluator respectively:

$$
\begin{aligned}
& \text { Average outcome: } \quad \nu_{0}^{A}=\int_{0}^{1} \mu(a) \mathrm{d} a=: \bar{\mu} \\
& \text { Partisan outcome : } \quad \nu_{0}^{P}=\mu\left(a_{P}\right)
\end{aligned}
$$

Strategic site selection

- Covariance $\sigma_{0 \cup}\left(a, a^{\prime}\right)$ for all $a, a^{\prime} \in[0,1]$
- Partisan evaluator P vs. utilitarian researcher A
- Site weights

$$
\omega_{p}(a)=\left\{\begin{array}{ll}
+\infty & \text { for } a=a_{P} \\
0 & \text { for } a \neq a_{P}
\end{array} \quad \omega_{A}(a)=1 \quad \forall a \in[0,1]\right.
$$

- Prior values of researcher and evaluator respectively:

$$
\begin{aligned}
& \text { Average outcome : } \quad \nu_{0}^{A}=\int_{0}^{1} \mu(a) \mathrm{d} a=: \bar{\mu} \\
& \text { Partisan outcome : } \quad \nu_{0}^{P}=\mu\left(a_{p}\right)
\end{aligned}
$$

- Where to place a single pilot $(k=1)$?

For any sample site $a \in[0,1]$, the induced $\rho(a)=1$. Hence,

$$
\left(\alpha_{1}(a), \alpha_{2}(a)\right)=\left(\psi_{P}(a), \psi_{A}(a)\right)
$$

Single-player sites

$$
a_{P}^{*}=a_{P} \geq 1 / 2, \quad a_{A}^{*}=1 / 2
$$

Figure 7: ψ_{P} in red and ψ_{A} in blue

1. Compromise in site selection

Sites in $\left[1 / 2, a_{P}\right]$ are compromise sites

- strict trade-off between posterior variances

Proposition

(i) If players are in prior disagreement, the optimal site is a compromise.
(iii) Suppose prior disagreement and fix $\bar{\mu}$. The optimal site is increasing in $\left|\mu\left(a_{P}\right)\right|$. If $\mu\left(a_{P}\right)=0$, the optimal site is the median site. For sufficiently large $\left|\mu\left(a_{p}\right)\right|$, the optimal site is exactly a_{p}.

2. Optimal selection of peripheral sites

- Prior agreement is necessary for the optimal site $a^{*} \notin\left[1 / 2, a_{\rho}\right]$

Proposition

Suppose players are in prior agreement. For $a_{P}>1 / 2$ and $\mu\left(a_{p}\right)$ sufficiently close to zero, the optimal site is unique and $a^{*}<1 / 2$.

2. Optimal selection of peripheral sites

- Prior agreement is necessary for the optimal site $a^{*} \notin\left[1 / 2, a_{p}\right]$

Proposition

Suppose players are in prior agreement. For $a_{p}>1 / 2$ and $\mu\left(a_{p}\right)$ sufficiently close to zero, the optimal site is unique and $a^{*}<1 / 2$.

Figure 8: $\mu\left(a_{P}\right)$ in x-axis and optimal site in y-axis. $\ell=1 / 2, \bar{\mu}=1 / 2, a_{p}=4 / 5$.

2. Optimal selection of peripheral sites

- Prior agreement is necessary for the optimal site $a^{*} \notin\left[1 / 2, a_{\rho}\right]$

Proposition

Suppose players are in prior agreement. For $a_{p}>1 / 2$ and $\mu\left(a_{p}\right)$ sufficiently close to zero, the optimal site is unique and $a^{*}<1 / 2$.

Figure 8: $a_{P}=4 / 5$

2. Optimal selection of peripheral sites

- Prior agreement is necessary for the optimal site $a^{*} \notin\left[1 / 2, a_{\rho}\right]$

Proposition

Suppose players are in prior agreement. For $a_{P}>1 / 2$ and $\mu\left(a_{p}\right)$ sufficiently close to zero, the optimal site is unique and $a^{*}<1 / 2$.

- at $\mu\left(a_{P}\right)=0$, the median site is optimal
- for $\left|\mu\left(a_{P}\right)\right|$ sufficiently small relative to $|\bar{\mu}|$, influencing the probability of adoption is of first order
- suppressing ψ_{p} preserves evaluator's prior bias
- this come at a cost for researcher: suppress ψ_{A} too

2. Optimal selection of peripheral sites

This continues to hold even if $a_{p}=1 / 2$: median site is most informative for both researcher and evaluator

Figure 8: $\mu\left(a_{P}\right)$ in x-axis and optimal site in y-axis. Parameter values: $\ell=1 / 2, \bar{\mu}=1 / 2, a_{p}=1 / 2$.

3. Distortions largest for moderate correlation

- Distortions even when $a_{A}=a_{P}=1 / 2$
- Distortions vanish as $\ell \rightarrow+\infty$ and $\ell \rightarrow 0$
- $\left|a^{*}-1 / 2\right|$ single-peaked in ℓ

3. Distortions largest for moderate correlation

- Distortions even when $a_{A}=a_{P}=1 / 2$
- Distortions vanish as $\ell \rightarrow+\infty$ and $\ell \rightarrow 0$
- $\left|a^{*}-1 / 2\right|$ single-peaked in ℓ

Figure 9: $\mu\left(a_{p}\right)$ in x-axis and optimal site in y-axis. Parameter values:
$\ell=10, \bar{\mu}=1 / 2, a_{P}=1 / 2$.

3. Distortions largest for moderate correlation

- Distortions even when $a_{A}=a_{P}=1 / 2$
- Distortions vanish as $\ell \rightarrow+\infty$ and $\ell \rightarrow 0$
- $\left|a^{*}-1 / 2\right|$ single-peaked in ℓ

Figure 9: $\mu\left(a_{p}\right)$ in x-axis and optimal site in y-axis. Parameter values:
$\ell=1 / 2, \bar{\mu}=1 / 2, a_{P}=1 / 2$.

3. Distortions largest for moderate correlation

- Distortions even when $a_{A}=a_{P}=1 / 2$
- Distortions vanish as $\ell \rightarrow+\infty$ and $\ell \rightarrow 0$
- $\left|a^{*}-1 / 2\right|$ single-peaked in ℓ

Figure 9: $\mu\left(a_{p}\right)$ in x-axis and optimal site in y-axis. Parameter values:
$\ell=1 / 5, \bar{\mu}=1 / 2, a_{p}=1 / 2$.

3. Distortions largest for moderate correlation

- Distortions even when $a_{A}=a_{P}=1 / 2$
- Distortions vanish as $\ell \rightarrow+\infty$ and $\ell \rightarrow 0$
- $\left|a^{*}-1 / 2\right|$ single-peaked in ℓ

Figure 9: $\mu\left(a_{p}\right)$ in x-axis and optimal site in y-axis. Parameter values:
$\ell=1 / 10, \bar{\mu}=1 / 2, a_{P}=1 / 2$.

Concluding remarks

Discussion

Flexible framework for modeling selective sampling of attributes

1. selective learning:
simple informativeness index for identifying the single-player sample
2. influence:
taxonomy of distortions due to the sample controlling both learning and alignment of players

Discussion

Tractable and novel learning framework to further address:

- Partial / targeted adoption
- the attribute problem is inherently one of full scale or no adoption
- adoption of a strict subset of attributes upon inspection
- bridge between problems of search and attribute sampling
- Aggregation of local knowledge
- constrained access to attribute realizations (site outcomes)
- sites / attributes need to be incentivized to collect and/or impart local information

Thank you!

Centrality of a sample

Heuristic construction: centrality of a sample in the attribute graph

- without loss, $\omega(a) \geq 0$ for all $a \in \mathcal{A}$
- reminder: weights add to up
- $\sigma(a, a)=1$ for all $a \in \mathcal{A}$

Centrality of a sample

Heuristic construction: centrality of a sample in the attribute graph

- without loss, $\omega(a) \geq 0$ for all $a \in \mathcal{A}$
- reminder: weights add to up
- $\sigma(a, a)=1$ for all $a \in \mathcal{A}$
- Infinite weighted graph $\mathcal{G}(\mathcal{A}, E)$ with
- attributes as nodes
- edge weight $e_{a a^{\prime}}=\sigma\left(a, a^{\prime}\right)$

Centrality of a sample

Heuristic construction: centrality of a sample in the attribute graph

- without loss, $\omega(a) \geq 0$ for all $a \in \mathcal{A}$
- reminder: weights add to up
- $\sigma(a, a)=1$ for all $a \in \mathcal{A}$
- Infinite weighted graph $\mathcal{G}(\mathcal{A}, E)$ with
- attributes as nodes
- edge weight $e_{a a^{\prime}}=\sigma\left(a, a^{\prime}\right)$

- \mathcal{G}_{a} : subgraph consisting of nodes a and edges within

Sample centrality

Sample centrality is a function

$$
\gamma: \bigcup_{k \in \mathbb{N}} \mathcal{A}_{k} \rightarrow \mathbb{R}
$$

equal to

- the sum of walks of any length ...
- from a random node $a \in \mathcal{A}$...
- to another random node a^{\prime}...
- drawn according to density $\omega(a) \omega\left(a^{\prime}\right)$...
- such that all intermediate nodes in each walk are in \mathcal{G}_{a}.

Akin to betweenness centrality for non-singleton sets of nodes.

Sample centrality

Theorem (Sample centrality of a single-player sample)
(i) For any sample a for which \mathcal{G} is a-walk-summable, its sample centrality is equal to the posterior variance that the sample induces, i.e. $\gamma(\mathrm{a})=\psi^{2}(\mathrm{a})$.
(ii) Fix capacity k, and suppose \mathcal{G} is k-walk-summable. Any single-player sample attains the highest sample centrality.

Sample centrality

Theorem (Sample centrality of a single-player sample)
(i) For any sample a for which \mathcal{G} is a-walk-summable, its sample centrality is equal to the posterior variance that the sample induces, i.e. $\gamma(\mathrm{a})=\psi^{2}(\mathrm{a})$.
(ii) Fix capacity k, and suppose \mathcal{G} is k-walk-summable. Any single-player sample attains the highest sample centrality.

If walk-summability fails, we modify it through path-summability

- (finite-length) paths instead of walks within \mathcal{G}_{a}
- well-defined for any positive definite covariance σ

Two distortions

Proposition (Joint suppression of informativeness)

(1) An optimal sample is dominated only if players are in prior agreement.
(2) If all the following hold:
(i) the players are in prior agreement,
(ii) there exists at least one sample $\mathbf{a} \in \mathcal{A}_{k}$ such that $\rho(\mathrm{a})>0$,
(iii) at any α_{2}-maximal feasible sample, there exists a sample arbitrarily close to it that is dominated by it
then there exist \bar{x}^{p} and $\underline{x}^{A}<\bar{x}^{A}$ such that for $\left|\nu_{0}^{P}-r_{p}\right| \leq \bar{x}^{p}$ and $\underline{x}^{A} \leq\left|\nu_{0}^{A}-r_{A}\right| \leq \bar{x}^{p}$ any optimal sample a^{*} is dominated and has $\alpha_{1}\left(\mathrm{a}^{*}\right)>0$.

Two distortions

Proposition (Influence via controversial sampling)

(i) A controversial sample is optimal only if players are in prior disagreement.
(ii) When in prior disagreement, agent forgoes informative sampling if and only if all feasible samples are controversial and $\rho(\mathrm{a})$ is sufficiently negative for all $\mathrm{a} \in \mathcal{A}_{k}$.
(iii) If the optimal sample \mathbf{a}^{*} is controversial, then for any feasible non-controversial sample $\mathrm{a}, \psi_{P}\left(\mathrm{a}^{*}\right)>\psi_{P}(\mathrm{a})$.

