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Abstract

When different stages of the evaluation of a multi-attribute project rest with con-
flicting economic actors, which attributes are selectively explored and why? We provide
a model of attribute sampling in which correlation across attributes is flexibly modeled
through Gaussian processes. In the absence of conflict, the optimal sample of attributes
maximizes informativeness by balancing out-of-sample extrapolation with correlation
within the sample. It depends neither on the prior value of the project nor on the
format of sampling. Agency conflict, in contrast, gives rise to distortions. Sampling
serves a dual purpose of generating valuable information and influencing the co-player.
When influence takes priority, optimal sampling either suppresses informativeness for
both players or negatively correlates their interests. Casting site selection as an at-
tribute problem, our framework provides a theoretical rationale for site selection bias
in small-scale program evaluation.
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1 Introduction

Important decisions rely on selective exploration of objects with multiple attributes: from
potential buyers appraising complex products to employers evaluating the diverse skills
of prospective employees and policymakers gauging the spatial impact of social programs.
More often than not, such exploration is undermined by agency conflict: the party deciding
which attributes to explore differs from the party that translates the findings into a decision.
Understanding the nature of such selective and decentralized exploration – which attributes
are optimally explored and why – has been of long-standing interest in economics (Lancaster
(1966), MacCrimmon (1968), Keeney and Raiffa (1976)). An important feature that is
shared by these examples but is absent from most of the literature on attribute learning is
that attributes are correlated. Thus, evaluation hinges on non-trivial extrapolation from
explored attributes to those left unexplored.

Our model features a principal and an agent who jointly evaluate an uncertain project
consisting of a multitude of attributes. Players have separate authorities over evaluation:
the agent decides which attributes to sample subject to a sampling capacity, whereas the
principal decides whether to adopt the project. Attributes are observed perfectly if sampled,
and players are symmetrically informed at all times. Conflict between players is therefore
one of interest rather than information: players disagree on the weighing of different at-
tributes and the value of the status quo.

The analysis in the paper is twofold. First, we characterize the subset of attributes that
is optimally sampled in the benchmark of no agency conflict. The optimal sample maximizes
a natural informativeness statistic that summarizes the extent to which sample attributes
are informative about out-of-sample attributes and generate overlapping information within
the sample. Second, we characterize sampling distortions that arise due to agency conflict.
To address these aims, a novel and flexible framework for attribute sampling is introduced.

The project is characterized by the uncertain realizations of a mass of attributes A.1

Attribute realizations are assumed to follow an unknown mapping, drawn randomly from
the space of sample paths of a Gaussian process. The process is pinned down by two
commonly known parameters: an attribute mean function µ : A → R and an attribute
covariance function σ : A × A → R. Covariance σ introduces a natural similarity metric
across attributes. The stronger the covariance between attributes a and a′, the stronger
is the inference drawn from one attribute to the other and therefore the more similar the

1For example, when evaluating the skill bundle of a job candidate, “writing skills” and “time-management”
would be attributes, whereas the candidate’s proficiency in each skill would be her attribute realizations.
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two attributes are. This setup is both general and tractable: it covers a vast array of
attribute mappings and extrapolation patterns. Figure 1 illustrates extrapolation across a
small sample of attributes for four such Gaussian processes.

(a) Standard Brownian: σBr(a, a
′) = min(a, a′) (b) Ornstein-Uhlenbeck: σOU (a, a

′) = e−20|a−a′|

(c) Squared exponential: σSE(a, a
′) = e−400(a−a′)2 (d) Polynomial: σpol(a, a

′) = (1 + aa′)10

Figure 1: The randomly drawn attribute mapping is in grey and the extrapolated mapping is in red. For all
plots, A = [0, 1], µ(·) = 0 and sample of attributes a = (1/5, 2/5, 3/5, 4/5).

The single-player benchmark consists of a pure learning problem. Each sample is suc-
cinctly summarized by the posterior variance that the sample induces on the player’s ex-
pected value from the project. The higher this posterior variance, the more informative
the sample is for adoption. But due to correlation across attributes, the informativeness
of a sample is potentially complex: it hinges on both generalizability to out-of-sample at-
tributes and non-redundancy within the sample. Posterior variance elegantly encodes these
considerations into a single tractable statistic (Theorem 3.1).

Moreover, the only building blocks of posterior variance are the covariance function and
attribute weights. Hence, the optimal single-player sample depends neither on the ex-ante
value of the project nor on attribute means or the player’s outside option. What is more, the
player samples in the same way under simultaneous sampling as under sequential sampling.
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Both observations are a consequence of the Gaussian structure across attributes. Taken
together, they teach us that a single player would evaluate any project – promising or not
relative to the status quo, bound or not to simultaneous draws – informed by the same set
of attributes. Once agency conflict makes an appearance, this is no longer the case.

In the principal-agent setting, sampling serves a dual purpose for the agent: it controls
both the sheer probability of adoption and the extent to which adoption is aligned with the
agent’s posterior value. Correspondingly, Theorem 4.1 shows that the agent’s payoff from
a given sample depends on a pair of sufficient statistics: (i) the sample’s informativeness
for the principal, and (ii) its informativeness for the agent, adjusted to reflect his lack
of adoption authority.2 Importantly, this characterization reduces optimization over all
feasible samples to optimization over a two-dimensional space.

This characterization enables us to explore two striking sampling distortions: suppres-
sion of informativeness for both players and controversial sampling. The first consists in
the optimal choice of a sample that can be strictly improved in its informativeness for both
players, whereas the second in a sample that correlates negatively the players’ expected
values for the project. We argue that both are manifestations of the same strategic concern
by the agent. They arise when the principal’s prior value is sufficiently close to her outside
option relative to the agent’s – so that there is more room for persuasion through sampling.
Under such circumstances, the agent sees sampling primarily as a means to controlling the
adoption probability rather than collecting useful information. Which of the two distortions
arises depends on whether players are in prior agreement about the project. Section 4.4
establishes these distortions for general attribute weights and general covariance function.

Section 5 presents an application to optimal site selection in impact evaluation. The low
generalizability of evaluation findings due to strategic site selection has recently been the
focus of a growing empirical literature (Allcott (2015), Bold et al. (2018), Vivalt (Forthcom-
ing)). We provide a theoretical rationale for this observation by formulating optimal site
selection as an attribute-sampling problem between a utilitarian researcher and a partisan
evaluator.3 Ideally the researcher would place the pilot studies at sites with the greatest
external validity.4 But in the presence of the partisan evaluator, he suppresses information

2Statistic (i) corresponds to the principal’s posterior variance, whereas (ii) corresponds to the portion of
the agent’s posterior variance that is explained by the principal’s posterior variance.

3That is, we consider a social program evaluated for full-scale implementation across a set of target sites,
the program outcomes of which are correlated. A utilitarian researcher has a budget of k pilot studies to
place in select target sites, whereas a partisan evaluator interested in the outcome at a single site translates
pilot findings into a decision about full-scale implementation.

4This is akin to the notion of purposive site selection in impact evaluation (Olsen et al. (2013)).
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by selecting peripheral sites deemed to be of low external validity by both.
Overall, the analysis makes two methodological contributions. First, the Gaussian path

approach that we introduce for modeling correlated attributes promises to be useful to
problems beyond attribute sampling. A byproduct of our analysis is the generalization
of the Brownian path approach introduced in experimentation and search literatures by
Callander (2011) and Jovanovic and Rob (1990).5 Second, section 6 presents a novel graph-
theoretic approach to the attribute problem to complement our characterization of single-
player sampling. We construct and interpret a natural centrality measure in the attribute
graph, namely sample centrality, which is a generalization of betweenness centrality to non-
singleton subsets of nodes (Freeman (1977), Everett and Borgatti (1999)). In doing so,
sample centrality departs from most existing network centrality measures, typically defined
only over single nodes.

The rest of this section discusses related work. Section 2 sets up the model and estab-
lishes preliminary results on extrapolation. Section 3 characterizes optimal sampling in the
single-player benchmark, while section 3.2 illustrates the characterization. The principal-
agent analysis may be found in section 4. Section 5 develops the application to optimal site
selection, while section 6 presents a graph-theoretic approach to the attribute problem.

Related literature. First and foremost, the paper builds on models of costly attribute
discovery. Klabjan, Olszewski and Wolinsky (2014) study a setting with finitely many inde-
pendent attributes that can be learned perfectly at a cost. They establish that if attributes
are ordered by second-order stochastic dominance and are equally costly, the optimal sample
consists of dominated attributes. Our model differs from theirs in that we allow for a con-
tinuum of correlated attributes while restricting attention to jointly Gaussian distribution.
Yet theorem 3.1 draws a common thread, as it shows that the distribution over posterior
values induced by the single-player sample is SOSD-dominated.6 Other related work com-
bines attribute sampling with search across several multi-attribute objects (Sanjurjo (2017),
Olszewski and Wolinsky (2016), Geng, Pejsachowicz and Richter (2017), Neeman (1995)).
In contrast, our focus is on learning from a single multi-attribute object.

Liang, Mu and Syrgkanis (2020) study dynamic and noisy learning of a finite number
of correlated attributes. Both our model and theirs leverage the tractability of Gaussian

5Outside of economics, Gaussian processes have been essential to spatial inference in geostatistics, also
known as kriging (Matheron (1963), Chilés and Delfiner (2012)). They are also increasingly used in kernel
methods in machine learning (Rasmussen and Williams (2006), Hofmann, Schölkopf and Smola (2008)).

6Due to correlation, attribute realizations are not necessarily SOSD-ordered. But the distributions over
posterior values induced by attribute samples are.
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correlation. There are, however, two key differences. First, our focus is on instantaneous
learning from a continuum of attributes, whereas their model works with a finite number
of attributes. As the attribute space becomes arbitrarily large, their main characterization
holds only if attributes are approximately independent. Second, we study the implications
of agency conflict for optimal sampling of attributes. Our focus on static learning from an
infinite set of correlated information sources differentiates our model from dynamic learning
models in Moscarini and Smith (2001), Fudenberg, Strack and Strzalecki (2018), Ke and
Villas-Boas (2019), Mayskaya (2019) and Che and Mierendorff (2019).

Starting with Aghion et al. (1991), a large literature studies selective learning of an
unknown payoff mapping. A productive technique in this literature has been to model
this payoff mapping as a Brownian sample path. Jovanovic and Rob (1990) model gradual
technological discovery through an infinite family of independent Brownian paths. Callander
(2011) studies optimal strategic experimentation with correlated bandit arms modeled as
the domain of a Brownian path. Garfagnini and Strulovici (2016) introduce costly learning
and forward-looking agents in this experimentation setup, whereas Callander and Hummel
(2014) explore forward-looking sequential experimentation with two players. Our model
departs from this body of work in two respects. First, we work with a large class of
Gaussian processes, where Brownian motion is but a special case.7 Second, the payoff-
relevant statistic here is the area under the sample path rather than a maximum of the
path – this crucial feature differentiates attribute discovery from search. In this respect our
model relates to Ilut and Vlachev (2017) and Callander and Clark (2017), in which players
seek to learn the entire sample path. In Ilut and Vlachev (2017), the problem is not one
of sampling: the agent merely selects amount of observational noise at exogenously drawn
states.8 In Callander and Hummel (2014) the Higher Court samples legal cases, but the
nature of the adoption problem faced by the Lower Court differentiates this model from
attribute learning.9

Our principal-agent sampling is related to models of persuasion through flexible experi-
mental design (Brocas and Carrillo (2007), Rayo and Segal (2010), Kamenica and Gentzkow
(2011)), Wald persuasion games (Henry and Ottaviani (2019)), and persuasion with multi-
dimensional information (Glazer and Rubinstein (2004), Sher (2011)). Our setup contrasts

7In an earlier version (Bardhi, 2018), attribute realizations followed a Brownian path. The current
framework strictly nests this special case, treated in depth in online appendix F.1.

8Ilut and Vlachev (2017) are a notable exception in that they model the payoff mapping through a
squared exponential Gaussian path rather than the traditional Brownian path.

9In Callander and Hummel (2014) optimal case selection does not consist of the most uncertain legal case
generically – similarly, the most uncertain attribute is not the most informative in section 3.
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with such work in that (i) attribute sampling imposes endogenous constraints on the set of
feasible information structures, and (ii) both players have attribute-dependent preferences.

Our application to site selection in section 5 shares with Di Tillio, Ottaviani and
Sørensen (2017a) and Di Tillio, Ottaviani and Sørensen (2017b) the interest in strategic
sample selection and its implications for the external validity of experiments. In contrast to
our setting, the agent in Di Tillio, Ottaviani and Sørensen (2017a) and Di Tillio, Ottaviani
and Sørensen (2017b) has state-independent preferences and discloses privately observed
signals.10 In contrast to Banerjee et al. (2017), our framework features a single principal
and there is no value from randomization over samples. Our analysis also relates to Hirsch
(2016) in the agent’s dual goals of learning and motivating the principal, although dis-
agreement here arises due to different attribute weighting rather than heterogenous beliefs.

2 Model
2.1 Setup

Players. A principal (P , she) and an agent (A, he) jointly evaluate a multi-attribute
project of uncertain quality. The agent decides which attributes to sample. The principal
observes the realizations of sample attributes and decides whether to adopt the project.
Attributes. The project consists of a mass of attributes A := [0, 1]d where d ≥ 1. The
realization of attribute a ∈ A is denoted by f(a) ∈ R. Attribute realizations follow an
unknown mapping f : A → R, drawn from the space of sample paths of a Gaussian process
(GP) with prior mean function µ : A → R and symmetric positive semidefinite covariance
function σ : A×A → R.11 Per standard notation, the distribution over mappings is

f ∼ GP (µ, σ) . (1)

Parameters (µ, σ) are commonly known and fully pin down the distribution of f . The prior
mean µ(a) specifies the expected realization of attribute a ∈ A, whereas σ(a, a′) specifies the
covariance between f(a) and f(a′) for any attribute pair a, a′ ∈ A. Correspondingly, σ(a, a)
is the variance of f(a). Figure 2a depicts the attribute mapping and the prior mean for a
familiar one-dimensional Gaussian process – namely, the Brownian motion. The following
assumption imposes a regularity condition on the prior distribution of f .

10Of the two, Di Tillio, Ottaviani and Sørensen (2017b) is more closely related as there the state is multi-
dimensional and the agent designs an experiment on his dimension of choice. Yet again, selective sampling
in their setup arises out of researcher’s access to private information.

11Given a probability space (Ω,F ,P), a stochastic process f := {f(a, ω)}a∈A,ω∈Ω is a GP if and only if
(f(a1), . . . , f(an)) is jointly Gaussian for any a1, . . . , an ∈ A and n ≥ 1. Appendix A.1 provides technical
preliminaries on GPs. For a comprehensive introduction, see Rasmussen and Williams (2006).
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Assumption 1 (Sample-path continuity). Almost surely any realization of f is continuous.

Assumption 1 implies that, for any realization of f , attributes that are close in the
attribute space have similar realizations. Importantly, this implies that µ and σ are both
continuous.12 That is, for any two attributes arbitrarily close in A, their respective realiza-
tions are almost perfectly correlated and arbitrarily close both ex-post and in expectation.
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1.2
Attribute mapping and prior mean

(a) Realized attribute mapping f in grey and
prior mean µ(a) = 2a in red.

(b) Yellow (resp., red) area depicts a player’s
true value vi (resp., prior value νi0).

Figure 2: For the depicted Brownian motion, σ(a, a′) = min(a, a′) for all a, a′ ∈ A = [0, 1]. The right panel
2b assumes that ωi(a) = 1 for all a ∈ [0, 1].

Sampling. Because f is drawn from the space of Gaussian sample paths, the realizations
of a sample of k attributes a = (a1, . . . , ak) are jointly Gaussian, that is

f(a) :=


f(a1)

...
f(ak)

 ∼ N




µ(a1)

...
µ(ak)


︸ ︷︷ ︸

µ(a)

,


σ(a1, a1) . . . σ(a1, ak)

... . . . ...
σ(ak, a1) . . . σ(ak, ak)


︸ ︷︷ ︸

Σ(a)


.

Let µ(a) and Σ(a) denote the sample mean and covariance matrix respectively. With some
notational abuse, let a ∈ a denote a sample attribute. The acquired sample (a, f(a)) is
observed publicly and players are symmetrically informed throughout the game. Fixing k,
it is without loss to restrict attention to the set of non-redundant samples of size at most
k, as any redundant attributes can be dropped from the sample:

Ak := {(a1, . . . , an) ∈ An, ∀n ≤ k, n ∈ N | Σ((a1, . . . , an)) is non-singular} .13

12Proposition A.1 provides sufficient conditions on (µ, σ) to guarantee sample-path continuity. On the
other hand, Proposition A.2 shows that sample-path continuity implies continuity of µ and σ.

13As is standard, covariance matrix Σ(a) is non-singular if and only if there exists no vector x ∈ Rn \ {0}
such that Var

(∑
i xif(ai)

)
= 0. In particular, there exists no a ∈ a such that σ(a, a) = 0.
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The agent samples attributes subject to sampling capacity k ∈ N. The cost of drawing
n attributes is zero if n ≤ k and +∞ otherwise. We contrast two sampling formats –
simultaneous and sequential – even though our main focus is on simultaneous sampling.
Under simultaneous sampling, agent draws the entire sample a before f(a) is observed.
Under sequential sampling, attributes are drawn sequentially in batches, with attribute
realizations in batch j observed before batch (j+1) is drawn. There is no cost of delay and
the principal decides after the agent concludes all sampling.

Payoffs. The value from adoption for player i is a weighted sum of attribute realizations

vi =

∫
A
f(a)ωi(a) da, (2)

where ωi : A → R is a Lebesgue-integrable attribute weight function for player i. Gener-
ically, for each player i the sum of attribute weights can be normalized to one.14 Weight
functions (ωA, ωP ) are commonly known. The value from rejection for player i is a known
outside option ri ∈ R. Hence there are two sources of inter-player conflict: (i) conflict about
the relative importance of attributes, and (ii) conflict about outside options.

Due to assumption 1 and the Lebesgue-integrability of ωi, the true adoption value vi
and its distribution are well-defined. At the start of the game, the true adoption value for
player i is distributed according to

vi ∼ N


∫
A
µ(a)ωi(a) da︸ ︷︷ ︸

:=νi0

,

∫
A

∫
A
σ(a, a′)ωi(a)ωi(a

′) dada′

 . (3)

Let νi0 = E[vi] denote i’s prior (expected) value from adoption. Figure 2b illustrates νi0 as
the area under prior mean µ. Similarly, let νi(a, f(a)) = E [vi | a, f(a)] denote the posterior
expected value for player i given sample (a, f(a)).15

Assumption 2 (Underdetermination by data). For any a ∈ Ak, any f(a), and at least
some player i ∈ {A,P}, Var (vi | a, f(a)) > 0.

Assumption 2 ensures that the sampling problem is non-trivial: capacity k is insufficient
to fully learn the adoption values for both players. For a simple violation, consider A = [0, 1],
σ(a, a′) = (1 + aa′), and ωi(a) = 1 for all a ∈ [0, 1]. In this case any attribute mapping is
linear; therefore player i can fully learn his value from the project with k = 1.16

14See lemma E.1. In the single-player benchmark, it is without loss to have ωi(a) ≥ 0 as well. The
covariance function is redefined to reflect the normalization to positive attribute weights. Hence ωi can be
reinterpreted as a probability density over attributes, which proves useful in section 6.

15For brevity, we often refer to νi0 and νi(a, f(a)) as prior value and posterior value, respectively.
16See online appendix E.4 for calculations.
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Finally, players are said to be in prior disagreement if
(
vP0 − rP

)
and

(
vA0 − rA

)
have

opposite signs. They are in prior agreement otherwise.

2.2 Inference and extrapolation

Player i’s inferential problem proceeds in two steps: he first extrapolates from sample
realizations to the rest of the attribute space, and then derives his posterior value from the
extrapolated mapping. Lemma 2.1 establishes that players’ best guess for an out-of-sample
attribute is a linear combination of sample realizations. Because sample realizations are
observed without noise, the extrapolated mapping traverses these realizations.

Lemma 2.1 (Extrapolation). Fix sample a = (a1, . . . , an) ∈ Ak, realizations f(a) ∈ Rk

and attribute â ∈ A. The expected realization f(â) is given by

E[f(â) | a, f(a)] = µ(â) +

k∑
j=1

τj(â;a) (f(aj)− µ(aj)) , (4)

where τj(â;a) is the (1, j)th entry of the vector
(
σ(a1, â) . . . σ(ak, â)

)
[Σ(a)]−1 . For any

j = 1, . . . , k and any m ̸= j, τj(aj ;a) = 1 and τm(aj ;a) = 0.

Simple as it may seem, equation (4) is quite general. In particular, this equation gener-
alizes the Brownian-bridge approach used in Callander (2011). The exact shape of extrap-
olation – and relatedly, the expressions for sample weights (τ1, . . . , τk) – are dictated by the
parametric form of the covariance function. Figure 1 in the introduction illustrated four
such extrapolation patterns. For instance, certain covariances give rise to local extrapola-
tion: the expectation for each attribute is based only on its nearest sample neighbors. The
Brownian path in Figure 1a and the Ornstein-Uhlenbeck path in Figure 1b are two such
examples.17 In contrast, Figure 1c and Figure 1d correspond to non-local extrapolation:
sample attributes both near and far are informative.

Lemma 2.2 shows that the posterior value is also a linear combination of sample real-
izations. The sensitivity of the posterior value to each sample realization aggregates the
sensitivity of the entire extrapolated mapping to it. Players agree on how to extrapolate
but hold generically different posterior values due to different attribute weights.

Lemma 2.2 (Posterior expected value). Fix sample a = (a1, . . . , ak) ∈ Ak and f(a) ∈ Rk.
Player i’s posterior expected value is a linear combination of sample realizations, i.e.

17Local extrapolation arises more generally for any Markov GP with d = 1. This is because for any such
process and any sample of size k ≥ 3, Σ−1(a) is tridiagonal (cf. Theorem 1 in Ding and Zhang (2018)).
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νi(a, f(a)) = νi0 +

k∑
j=1

τ ij(a) (f(aj)− µ(aj)) (5)

where realization f(aj) is weighted by

τ ij(a) :=

∫
A
τj(a;a)ωi(a) da (6)

and τj(a;a) is as in lemma 2.1.

2.3 Remarks on the model

Covariance as similarity of attributes. Covariance σ can be interpreted as a similar-
ity metric over attributes: the more similar two attributes are, the more accurately the
realization of one attribute can be predicted from that of the other. The choice of co-
variance, therefore, determines the nature of the multi-attribute project under evaluation:
the salience of certain attributes, the varying uncertainty across attributes, as well as the
complexity of the project.

The model imposes two assumptions on attribute correlation: (i) jointly Gaussian distri-
bution, and (ii) continuity of f . The latter guarantees that the project’s value is well-defined
and that the attribute space is rich, insofar as for any attribute there is another arbitrarily
similar to it. The Gaussian structure, on the other hand, is to be understood as reflecting
players’ maximal ignorance regarding the project. That is, for any subset of attributes with
a corresponding mean and covariance matrix, the multivariate Gaussian distribution is the
distribution that maximizes entropy.

Cost structure. Capacity cost implies that the single-player problem is one of exploration
rather than exploitation: how to best learn f with k select attributes. It is in the principal-
agent interaction that the exploitation motive becomes important. For example, the agent
samples attributes of low uncertainty or decides to forgo part of the capacity altogether in
order to better influence the principal.
Noisy observations. Because our focus is on which attributes should be learned from a
large attribute space rather than how well each attribute is to be learned, we assume zero
observational noise. Yet the model can be extended to include Gaussian noise. That is,
players observe y(a) = f(a) + ϵ(a) where ϵ(a) ∼ N

(
µ0(a), η2(a)

)
. Although optimal sam-

pling is affected by the presence of noise, the single-player equivalence between sequential
and simultaneous sampling still holds (Corollary E.2).18

18Also, example E.1 illustrates that with Brownian covariance greater observational noise steers the player
towards attributes that are more uncertain ex ante.
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3 Single-player sampling

This section establishes a benchmark for optimal sampling in the absence of conflict: sam-
pling and adoption are decided by the same player. Section 3.1 characterizes single-player
sampling for any prior mean and covariance and establishes an equivalence between simul-
taneous and sequential sampling. Section 3.2 demonstrates the tractability of this charac-
terization by applying it to a class of distance-based covariance functions.

3.1 General characterization

The sample choice determines the distribution of posterior expected value ν(·, f(·)).19 From
lemma 2.2, this posterior value follows a Gaussian distribution for any a ∈ Ak, that is,

ν(a, f(a)) ∼ N
(
ν0, ψ

2(a)
)
,

where ψ2 is the posterior variance induced by the sample. As expected from Bayesian
reasoning, for any sample a the mean of the posterior value is ν0. Therefore, ψ2 provides a
sufficient informativeness statistic based on which the agent ranks feasible samples. A higher
posterior variance implies a more variable adoption decision, which in turn corresponds to
a better informed adoption decision.

The player adopts the project if and only if the realized posterior value is above his
outside option. His payoff from sample a is

V (a) := E [max {r, ν(a, f(a))}] = r + (ν0 − r)Φ

(
ν0 − r

ψ(a)

)
+ ψ(a)ϕ

(
ν0 − r

ψ(a)

)
, (7)

where ϕ and Φ denote the pdf and cdf of the standard Gaussian distribution. The player’s
payoff depends on the sample only through the posterior variance that the sample induces:
V (a) is strictly increasing and convex in ψ(a). The higher the posterior variance of a
sample, the more informative the sample is and the lower is the residual uncertainty about
the project’s value and the frequency of type I and type II errors.20 Because a more
informative sample better tailors adoption to the true value of the project, it also leads to
a higher expected value of an adopted project E [ν(a, f(a)) | ν(a, f(a)) ≥ r]. On the other
hand, the frequency of adoption decreases in posterior variance if the prior value favors
adoption (i.e. ν0 ≥ r) and increases in it otherwise. That is, a more informative sample
dampens the player’s prior attitude on adoption.

Theorem 3.1 characterizes optimal sampling and unpacks posterior variance ψ2. We refer
19For notational ease, we drop player’s index in this single-player benchmark.
20The residual uncertainty about the project is Var[v]− Var[ν(a, f(a))].
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to an optimal sample in this benchmark as a single-player sample. Posterior variance has two
building blocks: (i) extrapolative weights τ1(a), . . . , τk(a) assigned to sample realizations,
and (ii) intra-sample correlation, captured by σ(aj , am) for any pair of sample attributes
aj , am ∈ a. As equation (8) shows, posterior variance adds up product terms of the form
τj(a)τm(a)σ(aj , am) across all pairs of sample attributes. A pair of attributes adds to
posterior variance if and only if their realizations are expected to reinforce each other
towards the same adoption decision, i.e. τj(a)τm(a)σ(aj , am) > 0 for any such aj , am ∈ a.

Theorem 3.1 (Single-player sampling). Fix k ∈ N. Any single-player sample a∗

(i) consists of k distinct attributes, i.e. a∗ ∈ Ak \ Ak−1;

(ii) maximizes posterior variance ψ2(·), given by

a∗ ∈ arg max
a∈Ak

k∑
j=1

τj(a)

(
k∑

m=1

τm(a)σ(aj , am)

)
:= ψ2(a); (8)

(iii) does not depend on µ, ν0, and r.

The theorem also shows that single-player sampling is independent of the player’s ex-
pectations about the value of the project or the realizations of particular attributes. The
desirability of a sample is determined only by its informativeness for adoption, which in
turn depends neither on ν0 nor on µ. For a fixed covariance, any project – promising or not
– is evaluated based on the same sample of attributes. Moreover, the player uses the entire
sampling capacity to minimize the residual uncertainty about the project.

An immediate consequence of part (iii) of theorem 3.1 is that whether the player is
allowed to sample attributes sequentially is immaterial: the player would sample the same
attributes. The key observation is that the posterior expected value follows a martingale.
While sample realizations do inform the player’s expected value from adoption, they do not
affect the covariance across attributes that remain unsampled and the optimal continuation
sample. The latter depends only on attributes sampled so far.21 Therefore, costless delay
of sampling is of no value to the player. Proposition 3.2 establishes the result.

Proposition 3.2 (Equivalence of sampling formats). In the single-player benchmark, a
sample is optimal under sequential sampling of attributes if and only if it is optimal under
simultaneous sampling.

21Suppose that up to round t a sample (at, f(at)) of size t has been drawn. The updated covariance
function for a, a′ ∈ A is:

σt(a, a
′) = σ(a, a′)− Σ(a,at)[Σ(at)]

−1Σ⊤(at, a
′),

where Σ(a,at) is the 1 × t vector that lists the covariance of attribute a and that of each attribute in at,
and Σ(at) is the covariance matrix of the sample.
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3.2 Example: Ornstein-Uhlenbeck covariance

For tractable covariance functions, theorem 3.1 can be operationalized to derive properties
of the single-player sample. We illustrate this using a particular distance-based covariance
function – the Ornstein-Uhlenbeck (OU) covariance – which arises as a natural choice in
the context of optimal site selection in section 5. This discussion characterizes the posterior
variance and the single-player sample when the player weighs all attributes equally.

We let A = [0, 1]. For ease of exposition, we assume µ(·) = 0 and ω(·) = 1: attributes
have identical means and are of equal importance to the player. For any pair of attributes,
the covariance of their realizations depends only on the distance between the attributes.
That is, for any a, a′ ∈ [0, 1],

σOU (a, a
′) := e−|a−a′|/ℓ. (9)

This parametric form implies that σOU (a, a) = 1 for all a ∈ [0, 1]. The OU covariance
is suitable for describing a project the attributes of which are ex ante equally uncertain.
Therefore, f(a) ∼ N (0, 1) for any a ∈ [0, 1]. Attributes differ only insofar as they sit at
different positions in the attribute space.

The length-scale parameter ℓ measures how challenging it is to extrapolate away from
an attribute. The higher ℓ is, the more predictable the attribute mapping is locally. Cor-
relation decreases with distance, and ℓ captures the strength of that correlation across a
fixed distance. Note that attributes become perfectly correlated as ℓ → +∞ and perfectly
independent as ℓ→ 0. This observation allows a comparison of the single-player sample to
each of these limit cases.

The first step is to derive the weights assigned to each sample realization. Lemma
B.1 establishes that the expected realization of an out-of-sample attribute is inferred from
sample attributes to its immediate left and right only. Extrapolation is therefore local.
Due to the zero prior mean, the extrapolated mapping bends towards zero as illustrated in
Figure 1b in the introduction. Because of such local extrapolation, the weight assigned to
each sample attribute depends on its distance from its left and right sample neighbor. In
fact, lemma 3.3 shows that the weight is strictly increasing and concave in such distance.
The further away a sample attribute is from other sample attributes, the more its realization
is weighted by in the posterior value.

Lemma 3.3. Fix sample a = (a1, . . . , ak) where k ≥ 2 and 0 ≤ a1 < . . . < ak ≤ 1.
Realization f(aj) is weighted by
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τj(a) =


ℓ
(
1− e−a1/ℓ + tanh

(
a2−a1

2ℓ

))
if j = 1

ℓ
(

tanh
(
aj+1−aj

2ℓ

)
+ tanh

(
aj−aj−1

2ℓ

))
if j ∈ (1, k)

ℓ
(
1− e−(1−ak)/ℓ + tanh

(
ak−ak−1

2ℓ

))
if j = k.

For a singleton sample a = a1, τ1(a) = ℓ
(
2− e−a1/ℓ − e−(1−a1)/ℓ

)
.

Lemma 3.3 provides the critical step in obtaining an explicit expression for posterior
variance, the maximization of which then gives us the single-player sample. One might
intuitively guess that for k = 1 the player optimally samples a∗ = 1/2: attributes are
equally uncertain, so the most informative attribute is that on average closest to all other
attributes. Proposition 3.4 generalizes this intuition for any k ≥ 1.

The unique single-player sample has an elegant structure: it is symmetric around the
median attribute and adjacent sample attributes are equidistant. Sample attributes are
spaced exactly so that they are weighted equally in the player’s posterior value. As at-
tributes become increasingly more correlated, the sample strictly expands to more extreme
attributes.22 Figure 3 illustrates the single-player sample for various capacities and values
of ℓ. As capacity gets larger, the leftmost and rightmost attributes in the sample get closer
to a = 0 and a = 1 respectively.

Proposition 3.4 (Single-player sampling). Let a∗ = (a∗1, . . . , a
∗
k), where a∗1 < . . . < a∗k,

denote a single-player sample.

(i) Realizations are weighted equally in a∗, i.e. τj(a∗) = τm(a
∗) for all m, j ∈ {1, . . . , k}.

(ii) The single-player sample is unique and characterized by the equations:

1− e−a
∗
1/ℓ = tanh

(
1− 2a∗1
2ℓ(k − 1)

)
, a∗j = a∗1 + (j − 1)

1− 2a∗1
k − 1

. (10)

The single-player sample is symmetric with respect to a = 1/2, i.e. a∗j = 1 − a∗k−j+1

for any j = 1, . . . , k.

The proof of proposition 3.4 builds on the fact that the player can increase posterior
variance by shifting a non-symmetric sample slightly to the left or right – keeping the
distance between any two adjacent sample attributes fixed. Extreme attributes a = 0 and
a = 1 are never sampled optimally, but as either k or ℓ increase the single-player sample
gets closer to these extreme attributes.23

22Simulations with the squared exponential covariance (Figure 1c) suggest that Proposition 3.4 qualita-
tively holds for a large class of distance-based covariances, parametrized as σ(a, a′) =: g(|a − a′|/ℓ) for all
a, a′ ∈ A, where ℓ > 0 is a length-scale parameter.

23See Proposition G.4 for monotonicity in ℓ.
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To further illustrate the use of theorem 3.1, online appendices F.1 and F.2 perform the
same exercise with two more covariance functions. The Brownian covariance is suitable to
study the presence of benchmark attributes, i.e., attributes that are known ex ante and which
determine the expected outcome and uncertainty of all other attributes. The polynomial
covariance, on the other hand, illustrates non-local extrapolation across a sample.24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: The single-player sample corresponding to covariance σOU illustrated for k ∈ {1, . . . , 5} (bottom
up) and ℓ = 1 (red), ℓ = 1/2 (blue), ℓ = 1/5 (green), ℓ = 1/20 (magenta).

4 Influence and distortion in principal-agent sampling

4.1 Sufficient statistics for a sample

We first simplify the agent’s problem. In the principal-agent interaction the adoption de-
cision is based on the principal’s posterior value. But different samples induce different
correlation between the players’ posterior values. So the agent’s choice of sample balances
two considerations: he seeks to identify a sample that in expectation both leads to a well-
informed adoption decision and aligns the players’ posterior values. That is, he solves25

max
a∈Ak

rA + Pr
(
νP (a) ≥ rP

)︸ ︷︷ ︸
probability of adoption

·

E
[
νA(a) | νP (a) ≥ rP

]︸ ︷︷ ︸
expected value of an adopted

project for the agent

−rA

 . (11)

In striking the balance between informativeness and alignment of posterior values, the agent
might distort the choice of attributes and forgo part of the sampling capacity.

Let ρ(a) denote the correlation between posterior values νA(a) and νP (a) induced by
sample a. As expected, this pair of posterior values is jointly Gaussian, i.e.,

24This is due to the fact that unlike the Brownian motion and the Ornstein-Uhlenbeck process, the
Gaussian process resulting from a polynomial covariance is non-Markov.

25Hereafter we adopt shorthand notation νi(a) := νi(a, f(a)).
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(
νP (a)

νA(a)

)
∼ N

((
νP0

νA0

)
,

(
ψ2
P (a) ρ(a)ψA(a)ψP (a)

ρ(a)ψA(a)ψP (a) ψ2
A(a)

))
, (12)

where ψ2
A and ψ2

P denote the posterior variance for the agent and principal respectively.
There is an intuitive interpretation of the correlation induced by a sample: squared cor-
relation ρ2(a) measures the proportion of the variance in νA(a) that is explained by the
variance in νP (a). That is, if the agent were to indirectly predict his posterior value from
observing only the principal’s posterior value – i.e. no observation of individual attribute
realizations – ρ2 would measure the accuracy of that prediction.

Theorem 4.1 establishes that the agent’s expected payoff from a sample depends on
only two sufficient statistics. As explained below, these statistics summarize the extent to
which the sample is informative for each player. This characterization reduces the agent’s
optimization over all feasible samples to optimization over a two-dimensional space.
Theorem 4.1 (Sufficient statistics for a sample). The agent’s expected payoff from an
arbitrary sample a ∈ Ak is given by

VA(a) = rA +
(
νA0 − rA

)
Φ

(
νP0 − rP
α1(a)

)
+ α2(a)ϕ

(
νP0 − rP
α1(a)

)
, (13)

where α1(a) := ψP (a) and α2(a) := ρ(a)ψA(a). Moreover, for any a,a′ ∈ Ak such that
α1(a) = α1(a

′) and α2(a) > α2(a
′), agent strictly prefers a to a′.

First, α2
1(a) corresponds to the principal’s posterior variance, which is equal to the

variance induced on the adoption decision. In his single-player benchmark, the principal
would maximize this statistic. Hence α1(a) is the sample’s informativeness for the principal.

On the other hand, statistic α2(a) corresponds to the amount of variation in agent’s
posterior value that is explained by the principal’s posterior value. Intuitively, it captures
the share of the posterior variance for the agent that gets reflected in the adoption decision.
Naturally, α2

2(a) is weakly smaller than ψ2
A(a). We refer to α2(a) as the sample’s adjusted

informativeness for the agent, adjusted for the fact that the agent lacks adoption authority.
Its sign reflects the sign of ρ(a). The higher a sample scores in this statistic, the more
accurately the adoption decision reflects the agent’s interest.

Equation (13) makes plain the two channels through which the agent’s sampling strategy
influences adoption. First, the sample choice determines the probability of adoption. The
extent to which the agent prefers more frequent adoption based on her prior value is reflected
in the payoff term:
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(
νA0 − rA

)
Φ

(
νP0 − rP
α1(a)

)
. (Adoption frequency)

A more informative sample for the principal (i.e. higher α1) moves the principal closer to
agent’s ex ante preferred decision if players are in prior disagreement. It moves her further
away from the jointly preferred decision if the players are in prior agreement. So, more in-
formation seeks to persuade under prior disagreement and caution under prior agreement.26

The sample choice determines also whether the prospect of adoption is good news for
the agent. This depends on the correlation induced between the players’ posterior values:
a better informed principal is beneficial for the agent if and only if the sample correlates
their posterior values positively. This is reflected in the second term of the agent’s payoff:

α2(a)ϕ

(
νP0 − rP
α1(a)

)
. (Adoption accuracy)

Using this payoff characterization, we address two questions. First, will the agent ever
suppress informativeness for both himself and the principal, in the sense that the optimal
sample is dominated in both sufficient statistics? Second, will the agent ever find it optimal
to draw a sample that induces negative correlation between players’ values? Sections 4.2
and 4.3 analyze two stark special cases, whereas section 4.4 generalizes the discussion.
Remark 4.1 (Delay in sampling). The equivalence between simultaneous and sequential
sampling in the single-player benchmark no longer holds here. The agent benefits from
the flexibility of gradually tailoring the sample to the realized path of posterior values. Our
analysis below shows that the solution to the agent’s simultaneous-sampling problem depends
on (νP0 , ν

A
0 ). By a similar logic, under sequential sampling the posterior expected values that

the players hold at sampling round t will inform the agent’s optimal choice in round (t+1).

4.2 No conflict over attribute weights

We first illustrate suppression of information in a simple setting in which players have equal
attribute weights but different outside options. Because they weigh attributes in the same
way, players hold the same prior and posterior values: ν0 := νP0 = νA0 and νA(a) = νP (a)

for all a ∈ Ak. Also, the two sufficient statistics of Theorem 4.1 collapse to a single one:
ψP (a) = ψA(a) =: ψ(a). So players agree entirely on which samples are most informative.

Despite holding the same posterior value, players might disagree on the adoption decision
to be made based on it. Hence the agent uses sampling to influence the probability of an

26If the agent simply sought to maximize the probability of an adoption Φ
(
(νP0 − rP )/ψP (a)

)
, the optimal

sample would consist of the single-principal sample if νP0 ≤ rP and no informative sampling otherwise.
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Figure 4: Proposition 4.2(i)

adoption. His payoff from a sample can be reformulated as equal to the principal’s payoff
plus an adoption wedge proportional to the difference in their outside options, i.e.

VA(a) = VP (a) + (rA − rP )Φ

(
rP − ν0
ψ(a)

)
︸ ︷︷ ︸

adoption wedge

.

The principal’s payoff strictly increases in posterior variance – he always prefers a more
informative sample – but the adoption wedge need not. If the agent is the less conservative
player rA < rP , he seeks to induce more adoption. The way to do that is to provide more
information if ν0 ≤ rP and restrict information otherwise. It is straightforward to show that
for ψ sufficiently small, the sensitivity of the wedge term to ψ dominates. Hence, the agent’s
payoff is single-troughed in ψ: he prefers either zero posterior variance (i.e. no informative
sampling) or the highest attainable posterior variance (i.e. a single-player sample).

Proposition 4.2 establishes that if the prior value is sufficiently extreme the agent forgoes
the entire sampling capacity. On the other hand, whenever sampling takes place a single-
player sample is optimal. Therefore, the only distortion possible here is the full suppression
of informativeness for both players. This implies that some conflict over attribute weights
is necessary for partially informative samples to be optimal.

Proposition 4.2 (All-or-nothing sampling). Let ωA = ωP and rA ̸= rP .

(i) If rA < rP (resp., rA > rP ), there exists a threshold ν̄0(k) > rP (resp., ν0(k) < rP )
such that the agent samples a single-player sample for ν0 ≤ ν̄0(k) (resp., ν0 ≥ ν0(k))
and forgoes all sampling otherwise.

(ii) Threshold ν̄0(k) weakly increases in k and ν̄0(k) → ν̄0 < +∞ as k → ∞. Threshold
ν0(k) weakly decreases in k and ν0(k) → ν0 > −∞ as k → ∞.

Three remarks are in order about proposition 4.2. First when in prior disagreement
the agent always draws the most informative sample. Second, the agent forgoes sampling
whenever he is sufficiently more confident than the principal in his ex ante decision. In
Figure 4 sampling is forgone for sufficiently promising projects: players both favor adoption
ex ante, but the agent is the less conservative player. From the agent’s perspective, infor-
mative sampling is too risky in such circumstances. Third, agent’s willingness to sample

19



expands as capacity increases: if ν0 is such that he samples for some k, he also samples for
all k′ > k.

4.3 Extreme conflict over attribute weights

Consider now two players who are diametrically opposed about attributes: ωA(a) = −ωP (a)
for all a ∈ A. The pair of sufficient statistics boils down to (ψ(a),−ψ(a)), where ψ2

A(a) =

ψ2
P (a) := ψ2(a). So even though all feasible samples induce perfect negative correlation

between the players’ posterior values, players rank samples in the same way according to
their informativeness.

For expositional ease, we focus on rA = rP := r.27 First, it is immediate that if
r = 0 no informative sampling is uniquely optimal. For any possible realization of posterior
values, the principal uses the accumulated information to do the opposite of what the agent
would do.28 With r ̸= 0, the possibility of more nuanced distortions arises. Rather than
choosing between a single-player sample and no sample at all, the agent gradually suppresses
posterior variance by choosing a partially informative sample, the posterior variance of
which is strictly between zero and the maximal one. Even though all available samples
induce negative correlation, the agent resorts to sampling when the principal’s prior attitude
towards the project is particularly unfavorable. Through sampling, the agent seeks to
overturn the principal’s prior bias at the cost of greater misalignment.

Proposition 4.3. Let rA = rP = r and ωA(a) = −ωP (a) for any a ∈ A.

1. If r = 0, the agent forgoes all informative sampling for any k.

2. Let r > 0 (resp., r < 0). There exists a unique ν0(k) < −r (resp., ν̄0(k) > −r) such
that the agent optimally:

(i) forgoes all informative sampling for νA0 ≥ −r (resp., νA0 ≤ −r) ,

(ii) samples a partially informative sample for νA0 ∈ [ν0(k),−r] (resp., νA0 ∈ [−r, ν̄0(k)]),

(iii) samples a single-player sample for νA0 ≤ ν0(k) (resp., νA0 ≥ ν̄0(k)).

3. Threshold ν0(k) weakly decreases in k and threshold ν̄0(k) weakly increases in k.

27The results of this section remain qualitatively the same for any rA ̸= rP .
28Formally, for any given νA0 and any sample a ∈ Ak, the agent’s payoff from sampling it is

νA0 Φ

(
− νA0
ψ(a)

)
− ψ(a)ϕ

(
− νA0
ψ(a)

)
which is strictly greater than the payoff from not sampling given by min{νA0 , 0}.
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Figure 5: Proposition 4.3(ii). Given r > 0, principal adopts ex ante iff νA0 ≤ −r and agent adopts iff νA0 ≥ r.

Key to the proof of proposition 4.3 is the observation that the agent’s payoff is now
single-peaked in ψ. Intuitively, negatively correlation posterior values is an instrument of
last resort for the agent. He turns to it only if players are in prior disagreement and he is
relatively more confident in his preferred decision than the principal prior to sampling. This
explains why in Figure 5 projects with νA0 < −r are the ones for which the agent samples:
intervals (−∞,−r] and [r,∞) are both disagreement regions, but only in the former is the
agent the ex ante more confident player.

4.4 General attribute weights and outside options

4.4.1 Joint suppression of informativeness

No informative sampling in proposition 4.2 offers the most extreme manifestation of sup-
pression of informativeness for both players. With general attribute weights, the agent
might find it beneficial to settle for a sample with a low α1 and α2 without lowering both
statistics all the way to zero. This discussion identifies general sufficient conditions for such
suppression of informativeness to arise. The pair (α1, α2) determines a partial ranking of
feasible samples according to their informativeness. We say that a sample is dominated if
there exists another sample that induces higher informativeness for both players.

Definition 1 (Dominated sample). For any a,a′ ∈ Ak, a′ dominates a if α1(a
′) ≥ α1(a)

and α2(a
′) ≥ α2(a) with at least one strict inequality. Sample a is dominated if there exists

a feasible a′ ̸= a that dominates a.

All else equal, the agent’s payoff given by (13) is (i) strictly increasing in α1 if and only
if players are in prior disagreement, and (ii) strictly increasing in α2 for any (νA0 , ν

P
0 ). That

is, higher variance in the principal’s posterior value benefits the agent whenever he seeks
to challenge the principal’s prior view of the project. Therefore, if the agent ever prefers a
sample that is dominated, it must be that the players are in prior agreement.

To get to sufficient conditions for information suppression, we exploit the observation
made in section 4.2 that the agent needs to be relatively more confident than the principal
in his prior value. If the principal is exactly indifferent ex ante, the optimal sample attains
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the highest α2 that is feasible: we refer to it as α2-maximal.29 This is because the ex-ante
probability that the principal adopts is 1/2 for any sample choice. Given that the agent
cannot influence principal’s probability of adoption, he opts for maximizing the accuracy of
adoption instead.

Consider now an almost-indifferent principal who is in prior agreement with the agent:
say, they both favor adoption. If the agent is sufficiently more confident than the principal
about adoption, steering the principal towards more adoption is a first-order concern for
him. But the only way he can encourage more adoption is by reducing posterior variance for
the principal, given that the principal is inclined towards adoption ex ante. Therefore the
agent sacrifices some adjusted informativeness for himself in order to reduce informativeness
for the principal. If his prior value is sufficiently extreme, he forgoes all sampling. But if
his prior value is not too extreme, the optimal sample will be both somewhat informative
and dominated. Proposition 4.4 formalizes this insight.

Proposition 4.4 (Joint suppression of informativeness).

(1) An optimal sample is dominated only if players are in prior agreement.

(2) If all the following hold:

(i) the players are in prior agreement,

(ii) there exists at least one sample a ∈ Ak such that ρ(a) > 0,

(iii) at any α2-maximal feasible sample, there exists a sample arbitrarily close to it
that is dominated by it

then there exist x̄P and xA < x̄A such that for |νP0 −rP | ≤ x̄P and xA ≤ |νA0 −rA| ≤ x̄P

any optimal sample a∗ is dominated and has α1(a
∗) > 0.

4.4.2 Controversial sampling

Proposition 4.3 suggests that a sample that induces negative correlation among players’
posterior values can be optimal. In such a case, sampling induces players to grow farther
apart in their preference for adoption. But in section 4.3 all feasible samples were con-
troversial. More generally, we argue that a controversial sample can arise as optimal even
when other non-controversial samples are available. But first a definition.

Definition 2 (Controversial sampling). A sample a ∈ Ak is controversial if ρ(a) < 0.
29See lemma C.1. If the indifferent principal breaks the tie in favor of adoption, the agent samples an

α2-maximal sample if νA0 is not too large and forgoes sampling otherwise. The opposite holds if the principal
breaks the tie in favor of rejection.
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The prospect of an adoption from a controversial sample is unfavorable for the agent:
the agent’s expected value from an adopted project is even lower than his prior value. He
is willing to face such a prospect only if players are in prior disagreement, in which case
sampling might induce the principal to switch to agent’s ex ante preferred decision with
some probability. That is, prior disagreement is necessary for controversial sampling.

But prior disagreement is not enough. For a controversial sample to be optimal, it is
also necessary that (i) all feasible controversial samples induce sufficiently weak negative
correlation, and (ii) all available non-controversial samples generate too little information
for the principal and hence too little uncertainty in the adoption decision. That is, a
controversial sample has to be sufficiently appealing in terms of the adoption frequency
that it generates relative to the mismatch of players’ interests. Proposition 4.5 formalizes
the intuition.30

Proposition 4.5 (Influence via controversial sampling).

(i) A controversial sample is optimal only if players are in prior disagreement.

(ii) When in prior disagreement, agent forgoes informative sampling if and only if all
feasible samples are controversial and ρ(a) is sufficiently negative for all a ∈ Ak.

(iii) If the optimal sample a∗ is controversial, then for any feasible non-controversial sample
a, ψP (a∗) > ψP (a).

5 Application: Site selection and generalizability
This application recasts the attribute sampling problem as a problem of site selection in
program evaluation. We reinterpret A = [0, 1] as the set of target sites of a novel social
program, the outcomes of which are uncertain and site-specific. That is, sites are ordered
from left to right according to an observable outcome-relevant characteristic, e.g., median
income.31 In this context, a sample is a collection of small-scale pilot studies located at
particular sites. Ultimately the program is either adopted across all target sites or in none
of them.

We adopt the Ornstein-Uhlenbeck covariance introduced in section 3.2. Site outcomes
are positively correlated and sites in close proximity are likely to witness similar outcomes

30For brevity, proposition 4.5 focuses on necessary conditions for controversial sampling. If the condition
of proposition 4.5(iii) is modified so that any controversial sample is more informative for the principal than
any other non-controversial sample, the provided conditions are also sufficient.

31This could easily be generalized to a vector of d > 1 outcome-relevant observables for a site by adopting
a multi-dimensional OU covariance function (with an appropriate metric ||a− a′|| for a, a′ ∈ [0, 1]d).
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from the program. Parameter ℓ ∈ [0,∞) captures the extent to which pilot findings can be
extrapolated across a fixed distance.

A researcher interested in the average outcome across all target sites has the authority
to choose pilot sites. He interacts with an evaluator, who decides on large-scale implemen-
tation. The evaluator is exclusively interested in the outcome of a single site aP ∈ [1/2, 1).
That is, the agent holds attribute weight ωA(a) = 1 for all a ∈ [0, 1], whereas the principal
holds ωP (aP ) = +∞ and ωP (a) = 0 for all a ̸= aP .32 We let rA = rP = 0. The prior value
of the evaluator is given by µ(aP ) whereas that of the researcher is the average attribute
realization µ̄ :=

∫ 1
0 µ(a)da.

The goal of this application is to illustrate how the researcher distorts site selection
in order to exert influence over program adoption. In empirical work there is a growing
awareness that pilot programs, although grounded in scientific practices, are often utilized
strategically among political actors with conflicting interests (Allcott (2015), Rogers-Dillon
(2004), Weiss (1993)). Even when pilot findings are disclosed truthfully, the selection of
pilot sites is in itself an important source of influence.

Researcher’s benchmark. In the absence of the evaluator, the researcher would select
sites as described in proposition 3.4: he would pick sites that are most informative about the
average outcome across all sites. His solution relates naturally to the concept of purposive
site selection in impact evaluations – a procedure that aims to identify sites that “yield the
most information and have the greatest impact in the development of knowledge” (Patton
(2014), Olsen et al. (2013)).33

Reinterpreted, theorem 3.1 has three implications for purposive site selection. First,
the selection of pilot sites should be free of site selection bias, where bias is defined as
non-zero correlation between the probability that a program is evaluated at particular sites
and the program’s outcome at those sites (Allcott, 2015). The single-player sample does
not depend on expected site outcomes. Second, the choice of pilot sites maximizes the
generalizability of pilot findings, where generalizability of a sample a is to be understood

32The evaluator’s ωP is the Dirac-delta function. For any integrable f , the following are well-defined:∫ 1

0

ωP (a) da = 1,

∫ 1

0

f(a)ωP (a) da = f(aP ).

One can interpret attribute weight ωP as the limit of (i) the density of N (aP , σ
2) as σ → 0, or alternatively

(ii) ω̃P (a) = ε for a ∈ [aP − ε/2, aP + ε/2] and ω̃P (a) = 0 otherwise as ϵ→ 0.
33This also relates to the test bore approach to site selection proposed in the New Jersey Income Mainte-

nance Experiment in the 1970s: “examining a discrete number of purposely chosen and distinctive samples
from which a complete composite can eventually be formed” (Watts, Peck and Taussig, 1977).
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as the ratio of posterior variance to ex ante uncertainty about the project ψ2(a)/Var(v).34

Third, the theorem implies that the researcher does not benefit from running pilot studies
sequentially. But even if run sequentially, the outcome observed at a given pilot site is
interpreted in the same way no matter whether it is an early or a late pilot.

Strategic site selection. For sharper insight we focus on the strategic choice of a sin-
gle pilot site (i.e., k = 1). This capacity would suffice for the evaluator to fully learn her
value: in her single-player benchmark, she would sample a∗P = aP . The researcher, on
the other hand, would sample a∗A = 1/2. Because any site correlates the players’ poste-
rior values perfectly, the sufficient statistics pair corresponding to a ∈ [0, 1] simplifies to
(α1(a), α2(a)) = (ψP (a), ψA(a)), as depicted in Figure 6a. Sites in the interval [1/2, aP ] are

0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0
αi

α1

α2

(a) The plot shows (α1(·), α2(·)) for
aP = 4/5 and ℓ = 1/2. The blue and
red dots mark the single-player optima.

(b) The plot depicts the optimal site as
a function of µ(aP ) given µ̄ = 1/2. The
dashed lines depict a∗A = 1/2 and a∗P =
4/5.

Figure 6: Sufficient statistics (a) and optimal selection of a peripheral site (b).

compromise sites: slightly shifting the pilot site strictly increases informativeness for one
player and decreases it for the other.

Three observations follow as corollaries of our analysis, and are expanded in appendix
G.1. First, prior disagreement between the researcher and the evaluator always leads to an
optimal site that is a compromise: a∗ ∈ [1/2, aP ]. The exact tradeoff between ψA and ψP

is pinned down by the relative magnitude of prior values µ(aP ) and µ̄. The more extreme
µ(aP ) is, the more the researcher has to cater to the evaluator and therefore the closer is
the optimal site to aP .

Second, the possibility of an optimal site that is not a compromise – and hence socially
inefficient – arises only if players are in prior agreement. Figure 6b plots the unique optimal
site as a function of µP . For |µP | sufficiently close to zero relative to µ̄, the optimal site is

34For a related notion of generalizability, see Vivalt (Forthcoming).
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even further away from aP than the median site. The researcher undershoots his preferred
site to reduce the uncertainty in the evaluator’s adoption.

Third, such distortion can arise even if aP = 1/2 – that is, when players rank sites in the
same away and the median site is the most informative for both. The researcher influences
by sampling a site other than the median site. We show that moderate correlation can even
lead to selection of the most peripheral sites a = 0 and a = 1, whereas distortions vanish
as sites become perfectly independent or perfectly correlated.

Random site selection. An empirically common alternative to purposive site selection is
random selection of pilot sites, with uniform and stratified uniform selection being the most
pervasive formats.35 Online appendix G.2 offers a comparison of purposive site selection
to the expected sites from each of these formats. Strikingly, we show that purposive site
selection converges to one of these formats as site outcomes become perfectly independent
ℓ→ 0 or perfectly correlated ℓ→ +∞.

6 Sample centrality: A graph-theoretic approach
For the distance-based covariance of section 3.2, the single-player sample is strikingly central
in the attribute space: sample attributes are equally spaced and symmetric around the
median attribute. This extension formalizes the centrality of the single-player sample for
any arbitrary covariance. Taking a graph-theoretic approach to the attribute problem, we
construct and interpret an appropriate centrality measure in the attribute graph, sample
centrality. This section heuristically argues that any single-player sample attains maximal
sample centrality in the attribute graph.36

We consider an infinite weighted attribute graph G = (A, E), where A is the set of
attribute-nodes and E is the set of weighted and undirected edges (Figure 7a). The weight
of an edge aa′ ∈ E joining nodes a, a′ ∈ A is equal to σ(a, a′).37 Within G, we let Ga denote
the subgraph consisting only of nodes in sample a and edges joining them. A key object for
our analysis is the walk product between any two nodes.

Definition 3 (Alternating walk product). A walk w of length ℓ ≥ 0 is a sequence of
attribute-nodes w = (a1, . . . , aℓ, aℓ+1) such that amam+1 ∈ E for m ∈ {1, . . . , ℓ}. The
alternating walk product for walk w is defined as

35For instance, the evaluation of the Job Training Partnership Act of 1982 initially aimed to select sites
in which to conduct the study through either random or stratified random selection “in order to obtain
nationally representative results.” See Hotz (1992).

36The technical core of this section is developed in online appendix H.
37Without loss, attribute weights are normalized so that σ(a, a) = 1 for any a ∈ A. Hence, the edge

weight equals the correlation between the two attribute-nodes that it joins.

26



κ(w) := (−1)ℓ
ℓ∏

m=1

σ(am, am+1).

Heuristically, a walk corresponds to one particular inference channel from an attribute
to another: the alternating walk product gives us the strength and sign of this inference. If
one were to sum up the alternating product for all possible walks from node a to node a′,
one would know how much can she infer about f(a′) from f(a). But we need only a subset
of such inference channels. As depicted in Figure 7b, we need only sum up the alternating
product for walks from a to a′ that go exclusively through Ga. This way we obtain the
alternating walk sum denoted by (a

a→ a′). The alternating walk sum measures how well a
sample connects any two nodes.

σ(a; a0)
a a

0

: : : : : :

(a) Two attribute-nodes.

a

a1

a2

a3

a
0

: : :

: : :

(b) Sample nodes a = (a1, a2, a3) are in
yellow, edges of Ga in solid lines, and
two out-of-sample nodes a, a′ in grey.

Figure 7: Attribute graph G = (A,E)

Hereafter, we assume that the alternating walk sum is well-defined for any sample a ∈
Ak, in the sense that for any ai, aj ∈ a the walk sum (ai

a→ aj) converges to the same value
for every possible summation order of walks.38

We are now ready to introduce a centrality measure γ : Ak → R over finite samples of
nodes. For any given sample, this measure quantifies how strongly the sample connects any
two randomly drawn nodes in A, where the probability of each node being drawn is given
by ω. For a simplistic illustration, suppose A = {a1, a2, a3} and a = (a1). Up to order,
the possible pairs for a first node and a final node are (a2

a1→ a3), (a2
a1→ a2), (a3

a1→ a3),
(a1

a1→ a1), (a1
a1→ a2), and (a1

a1→ a3). Thus γ(a) consists of the average across all such
possible alternating walk sums.

Definition 4 (Sample centrality). For any a ∈ Ak, its sample centrality γ(a) is defined as
the expected alternating walk sum Ea,a′

[
(a

a→ a′)
]

from a random first node a ∈ A to a
random last node a′ ∈ A such that:

38We relax this assumption in online appendix H.3. This allows us to have a notion of sample centrality
that is well-defined for any positive definite covariance function.
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(i) the ordered pair (a, a′) is drawn according to density g(a, a′) := ω(a)ω(a′);

(ii) for each walk w = (w0, . . . , wℓ), w0 = a, wℓ = a′, and wj ∈ a for j = 1, . . . , ℓ− 1.

Theorem 6.1 establishes that posterior variance ψ2(a) corresponds exactly to the sample
centrality of a. Hence, the single-player sample is the most central sample in G. As a
stepping stone, we first identify a graph representation of sample weights (Lemma H.3).
The weight τj(a) corresponds to the expected alternating walk sum from a randomly drawn
node in A to aj . Because the random node is generically not in a, τj(a) quantifies the
average “graph distance” from out-of-sample nodes to aj .39 Therefore, terms of the form
τj(a)τm(a)σ(aj , am) in the expression for posterior variance capture inference paths that go
from a to aj to am to a′.

Theorem 6.1 (Sample centrality of a single-player sample).

(i) For any sample a, its sample centrality is equal to the posterior variance that the
sample induces, i.e. γ(a) = ψ2(a).

(ii) Fix capacity k. Any single-player sample attains maximal sample centrality.

Sample centrality differs from most standard centrality measures insofar as it is well
defined over finite subsets of nodes. The two existing measures most closely related to it
are betweenness centrality and Bonacich centrality (Freeman (1977), Katz (1953), Bonacich
(1987)). Akin to betweenness centrality, sample centrality measures the extent to which
a subset of nodes connects any two arbitrary nodes in the graph. But it differs from
betweenness centrality in that it counts walks of arbitrary length rather than geodesic
paths. On the other hand, its walk-based construction relates it to Bonacich centrality.40

In this way, sample centrality offers a natural walk-based generalization of betweenness
centrality to non-singleton subsets of nodes.

Lastly, note that even though this extension focused on single-player sampling, principal-
agent sampling has a graph-theoretic interpretation too. It is immediate that the underlying
attribute graph G is the same for both players. The covariance between νP (a) and νA(a),
which is given by

Cov
(
νA(a), νP (a)

)
=

k∑
j,m=1

τPj (a)τAm(a)σ(aj , am).

39The random node is generically not in a if the support of ω is infinite.
40Bonacich centrality discounts walks of length ℓ by βℓ, where β ∈ (0, 1) is the discount factor. In contrast,

sample centrality discounts walks of length ℓ by (−1)ℓ. The sign-alternating Bonacich centrality appears
also in network games of pure substitutes (Bramoulle, Kranton and D’Amours (2014)). See section H.4.
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corresponds to the expected alternating walk sum through a between any two random
attributes, where one is drawn according to density ωP and the other according to ωA.
That is, Cov

(
νA(a), νP (a)

)
captures how strongly the sample connects attributes of greatest

interest for the agent to those of greatest interest for the principal.

7 Concluding remarks
Attribute sampling is central to a variety of economic applications in which attributes are
inherently correlated. This paper offered a flexible theoretical framework for addressing the
optimal learning of attributes. Our analysis established a benchmark for attribute sampling
and studied distortions that arise when agency conflict is present.

We recognize the variety of extensions that follow from our analysis but are beyond the
scope of this paper. First, our model abstractly covers many Gaussian processes that have
so far been unexplored in learning models. Identifying natural and tractable applications
for particular covariance classes (especially for multi-dimensional processes) is an imme-
diate next step. Relatedly, the careful study of non-Markov covariance functions, which
entail non-local patterns of extrapolation, is an exciting prospect for models of complex
experimentation as in Callander (2011) and Garfagnini and Strulovici (2016).

Another important direction for future work is the possibility of partial adoption. The
attribute problem is defined by the fact that the agent is forced to consume all attributes
upon adoption. A natural relaxation would be to allow the agent to flexibly choose the
subset of attributes he would like to adopt upon inspection. This direction conceptually
bridges the attribute problem to traditional models of search, as well as it is related to the
A/B testing problem in Azevedo et al. (2018).

Our framework is also promising for richer models of agency conflict. One such direction
building on section 5 is to allow target sites to independently run their own pilot studies
so as to influence the adoption decision of a social planner (e.g., a federal government).
The question of how gradual discovery of site outcomes unfolds across sites is of particular
interest. We leave these questions to future work.
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A Preliminaries
A.1 Sample-path continuity of Gaussian processes

Definition 5. The covariance function σ(a, a′) is symmetric if σ(a, a′) = σ(a′, a) for any
(a, a′) ∈ A2. It is positive semidefinite if for any f ∈ L2(A),∫

A

∫
A
σ(a, a′)f(a)f(a′) da da′ ≥ 0.
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Alternatively, σ is positive semidefinite if and only if for any n ∈ N, any collection
(a1, . . . , an) ∈ An and any vector x ∈ Rn \ {0},

n∑
i=1

n∑
i=1

xixjσ(ai, aj) ≥ 0.

Definition 6 (Sample-path continuity). Let Ω be an outcome space. A process f is sample-
path continuous at a0 ∈ A if, for almost all ω ∈ Ω, a→ a0 implies f(ω, a) → f(ω, a0). The
process is sample-path continuous if it is sample-path continuous at any a0 ∈ A.

It is straightforward that the continuity of µ is necessary for sample path continuity.
Hence without loss the following propositions normalize µ to zero.

Proposition A.1 (Sufficient conditions for sample-path continuity). Let A = [0, 1]d, d ≥ 1

and f be a zero-mean Gaussian process with covariance σ. If there exist β,K > 0 such that
σ(a, a) + σ(a′, a′)− 2σ(a, a′) ≤ K|a− a′|d+β for all a, a′ ∈ A then f has a modification on
A that is sample-path continuous.

Proof. By Kolmorogov’s Continuity Theorem, such a continuous modification exists if there
exist α, β,K > 0 such that E[|f(a)− f(a′)|α] ≤ K|a− a′|d+β ∀a, a′ ∈ A. Letting α = 2 and
using the fact that µ(a) = 0 for any a ∈ A, the LHS becomes

E[|f(a)− f(a′)|2] = E[f(a)2] + E[f(a′)2]− 2E[f(a)f(a′)] = σ(a, a) + σ(a′, a′)− 2σ(a, a′).

If the RHS is less than K|a − a′|d+β for some β,K > 0 then a continuous modification of
f exists.

Proposition A.2 (Continuity of σ). Let µ(a) = 0 for all a ∈ A. If f is sample-path
continuous at a1, a2 ∈ A, then σ(a, a′) is continuous at a = a1, a

′ = a2.

Proof for proposition A.2. First, if f is sample path continuous at some a1, a2 ∈ A, then

lim
a→a1

E
[
(f(a)− f(a1))

2] = lim
a→a2

E
[
(f(a)− f(a2))

2] = 0.

Therefore, f is mean-square continuous at a = a1, a2. Also, note that σ(a, a′) − σ(a1, a2)

= (σ(a, a′)− σ(a1, a
′)) + (σ(a1, a

′)− σ(a1, a2)) . But,

|σ(a, a′)− σ(a1, a
′)| = |E

[
(f(a)− f(a1)) f(a

′)
]
| ≤
√

E
[
(f(a)− f(a1))

2]√E [f(a′)2]

where the inequality follows from applying the Cauchy-Schwarz inequality for expectations.
Because f is mean-square continuous at a1, the first term of the RHS vanishes to zero as
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a → a1. Hence, lima→a1 |σ(a, a′) − σ(a1, a
′)| = 0. By a similar logic, lima′→a2 |σ(a1, a′) −

σ(a1, a2)| = 0. Combining these two observations, we conclude that σ(a, a′) is continuous
at a = a1, a

′ = a2, i.e. lima→a1 lima′→a2 σ(a, a
′) = σ(a1, a2).

A.2 Proofs for section 2.2

Proof for lemma 2.1. (i) The joint distribution is given by(
f(â)

f(a)

)
∼ N

((
µ(â)

µ(a)

)
,

(
σ(â, â) Σ(â,a)

Σ(â,a)⊤ Σ(a)

))

where Σ(â,a) =
(
σ(a1, â) . . . σ(an, â)

)
and Σ(a) is the sample covariance matrix. Hence,

E[f(â) | a, f(a)] = µ(â) + Σ(â,a)[Σ(a)]−1 (f(a)− µ(a)) .

(ii) Sample realizations are observed perfectly. Hence for any (a, f(a)) and any aj ∈ a,
E[f(aj) | a, f(a)] = f(aj). Therefore, τj(aj ;a) = 1 and τm(aj ;a) = 0 for m ̸= j.

Proof for lemma 2.2. Let µ(a) = 0 for all a ∈ A. Applying lemma 2.1, we obtain

νi(a, f(a)) =

∫
A
E[f(a) | a, f(a)]ωi(a) da

=

∫
A
(τ1(a;a)f(a1) + . . . τn(a;a)f(an))ωi(a) da =

n∑
j=1

f(aj)

(∫
A
τj(a;a)ωi(a) da

)
.

Because for any j ∈ {1, . . . , k}, νi(a, f(a))− νi0 and f(aj)− µ(aj) are centered at zero, for
any arbitrary mean µ : [0, 1] → R

νi(a, f(a))− νi0 =

n∑
j=1

(∫
A
τj(a;a)ωi(a) da

)
(f(aj)− µ(aj)).

B Proofs for section 3

B.1 Section 3.1: Characterization

Proof for theorem 3.1. (i) Suppose the single-player sample a∗ ∈ Ak−1. By assumption
2, Var(v | a∗, f(a∗)) > 0. Hence, there exists a ∈ A such that a /∈ a∗ and Cov(v, f(a) |
f(a∗)) > 0. Consider the new sample ã = a∗ ∪ a. It is immediate that ψ(ã) > ψ(a∗),
which contradicts the optimality of a∗.

(ii) Fix a ∈ Ak. Given (a, f(a)), lemma 2.2 provides the expression for ν(a, f(a)). Prior
to observing f(a), the distribution of ν(a, f(a)) is Gaussian. Note that E[ν(a, f(a))] =
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νi0 as E[f(aj)] = µ(aj) for any aj ∈ a. The posterior variance is given by

ψ2(a) := Var [ν(a, f(a))]

= Cov

 k∑
j=1

τj(a) (f(aj)− µ(aj)) ,

k∑
m=1

τm(a) (f(am)− µ(am))


=

k∑
j=1

τj(a)

(
k∑

m=1

τm(a)Cov (f(aj)− µ(aj), f(am)− µ(am))

)

=

k∑
j=1

τj(a)

(
k∑

m=1

τm(a)σ(aj , am)

)
.

The player adopts if and only if ν(a, f(a)) ≥ r. His value from sampling a is

V (a) = Pr [ν(a, f(a))) ≥ r]E [ν(a, f(a))] | ν(a, f(a))) ≥ r) + rPr [ν(a, f(a))) < r]

= Φ

(
ν0 − r

ψ(a)

)ν0 + ψ(a)
ϕ
(
r−ν0
ψ(a)

)
Φ
(
ν0−r
ψ(a)

)
+ r

(
1− Φ

(
ν0 − r

ψ(a)

))

= r + (ν0 − r)Φ

(
ν0 − r

ψ(a)

)
+ ψ(a)ϕ

(
ν0 − r

ψ(a)

)
.

But V (a) is strictly increasing in ψ(a) for any ν0 and r. Hence, any single-player
sample maximizes ψ(a).

(iii) For any a ∈ Ak, ψ(a) is independent of µ, ν0 and r. Hence, part (ii) implies that the
set of single-player samples is the same for (µ, ν0, r).

Proof for Proposition 3.2. Consider sequential sampling in m ≥ 1 batches of respective
sizes (q1, . . . , qm). First, note that the posterior variance attained by an optimal sequential
sample is at least as high as that of an optimal simultaneous sample. Fix an optimal
sequential sample a = (a1, . . . ,am) where aj = (a1j , . . . , a

qj
j ). Let νj denote the posterior

after aj := (a1, . . . ,aj) have been sampled.

Claim 1. For any j, (aj+1, . . . ,am) is independent of the sequence of posteriors ν1, . . . , νj.

Proof. The proof proceeds by induction. First, let j = m− 1. As in theorem 3.1(ii), agent
chooses am to maximize

V (am) = r + (νm−1 − r)Φ

(
νm−1 − r

ψ(am)

)
+ ψ(am)ϕ

(
(νm−1 − r

ψ(am)

)
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So, given am−1 the optimal continuation sample am is independent of νm−1 and therefore
of f(am−1). Next, suppose that for some j < m− 1, the sequence of optimal continuation
samples aj+1, . . . ,am depends on aj but not on f(aj). Consider now the choice of aj . For
any aj , there exists optimal continuation subsamples aj+1(aj), . . . ,am(aj) that –by the
inductive step – do not depend on f(aj). With some abuse of notation, let the posterior
variance attained by aj ∪ aj ∪ aj+1(aj) ∪ . . . ∪ am(aj) be denoted by ψ(aj). The agent
chooses aj so as to maximize

V (am) = r + (νj−1 − r)Φ

(
νj−1 − r

ψ(aj)

)
+ ψ(aj)ϕ

(
(νj−1 − r

ψ(aj)

)
.

Hence, aj maximizes ψ(aj).

By claim 1, any optimal sequential sample can be implemented under simultaneous
sampling: sequential sampling cannot attain a strictly higher posterior variance.

B.2 Section 3.2: Ornstein-Uhlenbeck covariance

Lemma B.1 (Nearest-neighbor extrapolation). Fix sample a = (a1, . . . , ak) where a1 <

. . . < ak. For a ∈ (0, a1), τ1(a,a) = e−(a1−a)/ℓ and τj(a,a) = 0 for j ≥ 2. For a ∈ (ak, 1),
τk(a,a) = e−(a−ak)/ℓ and τj(a,a) = 0 for j ≤ k−1. For a ∈ (aj , aj+1) where j = 1, . . . , k−1:

τn(a,a) =


csch

(aj+1 − aj
ℓ

)
sinh

(aj+1 − a

ℓ

)
if n = j

csch
(aj+1 − aj

ℓ

)
sinh

(a− aj
ℓ

)
if n = j + 1

0 if n ̸= j, j + 1.

(14)

Moreover, extrapolation between f(aj) and f(aj+1) is generically non-linear.
Proof for lemma B.1. Let p(a) := ea/ℓ and q(a) := e−a/ℓ. Covariance σOU can be decom-
posed into σOU (a, a

′) = p(a)q(a′)1[a ≤ a′] + p(a′)q(a)1[a′ < a]. Fix an arbitrary sample
a = (a1, . . . , ak) s.t. a1 < . . . < ak. By theorem 3 in Ding and Zhang (2018), Σ(a) is
invertible because (1) p(a)q(a′)−p(a′)q(a) < 0 for any a < a′, and (2) p(a)q(a′) > 0 for any
a, a′ ∈ [0, 1]. By theorem 1 in Ding and Zhang (2018), Σ−1(a) is symmetric tridiagonal.
Applying theorem 2 and letting dj := aj+1 − aj , the diagonal entries of Σ−1(a) are

pjj :=
(
Σ−1(a)

)
j,j

=



ed1/ℓ

2 sinh(d1/ℓ)
if j = 1

1

2
(coth(dj−1/ℓ) + coth(dj/ℓ)) if 2 ≤ j ≤ k − 1

edk−1/ℓ

2 sinh(dk−1/ℓ)
if j = k,
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The off-diagonal entries of Σ(a) are given by

pj−1,j :=
(
Σ−1(a)

)
j−1,j

=
−1

2 sinh(dj−1/ℓ)
.

The tridiagonal nature of the precision matrix simplifies the expression for τj(a,a) to

τj(a,a) = σ(a, aj)pjj + σ(a, aj−1)pj−1,j + σ(a, aj+1)pj,j+1.

Replacing σ(a, a′) = e−|a−a′|/ℓ and the expressions for pij , straightforward algebra yields
(14).

Note that for any a ∈ (aj , aj+1), τj(a,a) + τj+1(a,a) < 1. If extrapolation were linear,
the coefficients would be τj(a,a) = (aj+1−a)/(aj+1−aj) and τj+1(a,a) = (a−aj)/(aj+1−
aj). Therefore, extrapolation is non-linear.

Proof for lemma 3.3. Let a0 = 0 and ak+1 = 1, and suppose a = (a1, . . . , ak) ∈ Ak where
0 ≤ a1 < . . . < ak ≤ 1. For any j = 1, . . . , k

τj(a) =

∫ aj

aj−1

τj(a,a) da+

∫ aj+1

aj

τj(a,a) da, (15)

where τj(a,a) is derived in lemma B.1. Substituting (14) into (15) gives the result.

Proof of proposition 3.4.
(i) We first argue that any optimal sample is interior, i.e. given k ∈ N, a∗1 > 0 and a∗k < 1.
Suppose by way of contradiction that a∗1 = 0. For any sample a ∈ Ak, taking the partial
derivative with respect to the leftmost attribute, we obtain

∂ψ2(a)

∂a1

∣∣∣∣
a1=0

= 2ℓe−2a1/ℓ
(
2ea1/ℓ − 1

)
−2ℓsech2

(a2 − a1
2ℓ

) ∣∣∣∣
a1=0

= 2ℓ
(
1− sech2

(a2
2ℓ

))
> 0

for any a2 > 0 and ℓ > 0. Hence, the posterior variance strictly increases if a∗1 increases
incrementally to a strictly positive level, which contradicts the optimality of a∗1. Therefore
a∗1 > 0. By a similar argument, a∗k < 1.

Second we show that for any j ∈ {2, . . . , k} distance a∗j − a∗j−1 is constant. For any
a∗2, . . . , a

∗
k−1 the first-order condition is given by

∂ψ2(a)

∂a∗j
= 2ℓ

(
sech2

(
a∗j − a∗j−1

2ℓ

)
− sech2

(
a∗j+1 − a∗j

2ℓ

))
= 0.

Hence a∗j − a∗j−1 = a∗j+1 − a∗j for any j = 2, . . . , k − 1. This implies that a∗j − a∗j−1 =
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(1− a∗1 − a∗k)/n for any such j and therefore τ∗2 = . . . = τ∗k−1.
Suppose, by way of contradiction, that τ∗1 > τ∗k . By the fact that a∗2 − a∗1 = a∗k − a∗k−1,

it must be that a∗1 > 1 − a∗k. Consider a slight modification of the sample from a∗ to
ã so that ãj = a∗j − ϵ for any j = 1, . . . , k and for ϵ sufficiently small. By construction
ãj− ãj−1 = a∗j −a∗j−1 for all j = 2, . . . , k, hence τ̃j = τ∗j for any such j. Let τ̃1 = τ∗1 − ϵ1 and
τ̃k = τ∗k + ϵk, where ϵ1 < ϵk by the concavity of 1− e−d/ℓ in d and the fact that a∗1 > 1−a∗k.
Then,

τ̃1

k−1∑
j=2

τ̃j + τ̃k

k−1∑
j=2

τ̃j > τ∗1

k−1∑
j=2

τ∗j + τ∗k

k−1∑
j=2

τ∗j

and

(τ∗1 − ϵ1)
2 + (τ∗k + ϵk)

2 + 2(τ∗1 − ϵ1)(τ
∗
k + ϵk)

= τ∗1 + τ∗k + 2τ∗1 τ
∗
k + 2(τ∗1 + τ∗k )(ϵk − ϵ1) + (ϵ1 − ϵk)

2 > 0.

The rest of the terms are shared between ψ2(ã) and ψ2(a∗). Hence, ψ2(ã) > ψ2(a∗). This
contradicts the optimality of a∗; hence τ∗1 ≤ τ∗k . By a similar argument we establish that
τ∗1 ≥ τ∗k . Hence τ∗1 = τ∗k .

(ii) By the fact that τ∗j = τ∗i for any i, j ∈ {1, . . . , k} we observe that a∗1 = 1 − a∗k. Hence
a∗j − a∗j−1 = (1− 2a∗1)/(k − 1) for any j = 2, . . . , k. This implies that

a∗j = a∗1 +
j − 1

k − 1
(1− 2a∗1)

and hence the optimal sample is symmetric around 1/2.
The first order condition with respect to a∗1 pins down the entire optimal sample. Hence,

2ℓe−2a∗1/ℓ
(
2ea

∗
1/ℓ − 1

)
−2ℓsech2

(
1− 2a∗1
2ℓ(k − 1)

)
= 0 ⇔ 2ea

∗
1/ℓ−1 = e2a

∗
1/ℓsech2

(
1− 2a∗1
2ℓ(k − 1)

)
.

By a known trigonometric identity, sech2(x) = 1− tanh2(x) = (1− tanh(x))(1 + tanh(x)).
Moreover, τ∗1 = τ∗2 gives us an expression for 1− tanh ((1− 2a∗1)/(2ℓ(k − 1))). Substituting
that into the FOC and simplifying, we obtain

1− e−a
∗
1/ℓ = tanh

(
1− 2a∗1
2ℓ(k − 1)

)
.

Note that this also implies the sufficiency of τ∗1 = . . . = τ∗k for optimality: if a∗1 guarantees
that all observations are weighted equally, then a∗1 is the optimal leftmost attribute.
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C Proofs for section 4
Proof for lemma 4.1. Letting νi(a, f(a)) =: νi(a) and ρ(a) denote the correlation between
νP (a) and νA(a), the joint distribution is Gaussian:(

νP (a)

νA(a)

)
∼ N

((
νP0

νA0

)
,

(
ψ2
P (a) ρ(a)ψA(a)ψP (a)

ρ(a)ψA(a)ψP (a) ψ2
P (a)

))
.

Claim 2. For any rP ∈ R,

f(νA(a) | νP (a) ≥ rP ) =
ϕ
(
νA(a)−νA0
ψA(a)

)
ψA(a)Φ

(
νP0 −rP
ψP (a)

)Φ
νP0 + ρ(a)ψP (a)

ψA(a)(ν
A(a)− νA0 )− rP

ψP (a)
√

1− ρ(a)2

 .

Proof. Let x1, x2 be jointly Gaussian with means µ1, µ2, variances σ21, σ22 and covariance
σ12. Let f1, f2 and F1, F2 denote their respective pdf and cdf. Then,

f(x1 | x2 ≥ x̄) =
1

1− F2(x̄)
Pr(x2 ≥ x̄)f(x1 | x2 ≥ x̄)

=
1

1− F2(x̄)

∫ ∞

x̄

f(x2 | x1)f1(x1)dx2

=
f1(x1)

1− F2(x̄)
(1− Fx2|x1(x̄)).

The first line multiplies and divides by Pr(x2 ≥ x̄). The second line rewrites Pr(x2 ≥
x̄)f(x1 | x2 ≥ x̄) using the joint density and the observation that f(x1, x2) = f(x2 |
x1)f1(x1). The last two lines use the conditional distribution of x2 | x1. But,

x2 | x1 ∼ N
(
µ2 + ρ

σ2
σ1

(x1 − µ1), (1− ρ2)σ22

)
and ρ = σ12

σ1σ2
. Therefore, we can substitute in the expression for Fx2|x1 to obtain

f(x1 | x2 ≥ x̄) =
f1(x1)

1− F2(x̄)

(
1− Φ

(
x̄− µ2 − ρσ2σ1 (x1 − µ1)

σ2
√

1− ρ2

))
.

Switching back to our variables of interest, let x1 := νA(a) ∼ N (νA0 , ψ
2
A(a)), x2 := νP (a) ∼

N (νP0 , ψ
2
P (a)) and x̄ := rP . Therefore,

f(νA(a)|νP (a) ≥ rP ) =
ϕ
(
νA(a)−νA0
ψA(a)

)
ψA(a)

(
1− Φ

(
rP−νP0
ψP (a)

))
1− Φ

rP − νP0 − ρ(a)ψP (a)
ψA(a)(ν

A(a)− νA0 )

ψP (a)
√

1− ρ(a)2

 .

Using the claim, observe that:
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Pr(νP (a) ≥ rP )E[νA(a) | νP (a) ≥ rP ] = Φ

(
νP0 − rP
ψP (a)

)∫ ∞

−∞
νA(a)f(νA(a)|νP (a) ≥ rP ) dν

A(a)

=

∫ ∞

−∞

νA(a)

ψA(a)
ϕ

(
νA(a)− νA0
ψA(a)

)
Φ

νP0 + ρ(a)ψP (a)
ψA(a)(ν

A(a)− νA0 )− rP

ψP (a)
√

1− ρ(a)2

 dνA(a)

=

∫ ∞

−∞

(
xψA(a) + νA0

)
ϕ(x)Φ

(
νP0 + ρ(a)ψP (a)x− rP

ψP (a)
√

1− ρ2(a)

)
dx,

where in the last line x :=
νA(a)−νA0
ψA(a) . From Owen (1980), we have the following Gaussian

identities (respectively, numbered 10,010.8 and 10,011.1 in Owen (1980)):

∫ ∞

−∞
ϕ(x)Φ(a+ bx)dx = Φ

(
a√

1 + b2

)
,

∫ ∞

−∞
xϕ(x)Φ(a+ bx)dx =

b√
1 + b2

ϕ

(
a√

1 + b2

)
.

Letting a := (νP0 − rP )/(ψP (a)
√

1− ρ2(a)) and b := ρ(a)/
√

1− ρ2(a),

Pr(νP (a) ≥ rP )E[νA(a) | νP (a) ≥ rP ] = νA0 Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
.

Therefore, the agent’s payoff from sample a simplifies to

VA(a) = Pr(νP (a) < rP )rA + νA0 Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
= rA + (νA0 − rA)Φ

(
νP0 − rP
ψP (a)

)
+ ρ(a)ψA(a)ϕ

(
νP0 − rP
ψP (a)

)
.

Proof for proposition 4.2. Because ωA = ωP , ψi(a) = ψ(a) and νi0 = ν0 for i = A,P . From
theorem 4.1, the agent’s payoff from a ∈ Ak simplifies to

VA(a) = rA + (ν0 − rA)Φ

(
ν0 − rP
ψ(a)

)
+ ψ(a)ϕ

(
ν0 − rP
ψ(a)

)
.

VA is increasing in ψ(a) if and only if

ψ2(a) ≥ (rP − rA)(ν0 − rP ). (16)

Hence for any (ν0, rP , rA), VA is either strictly increasing or single-troughed in ψ.
(i) Suppose first that rA < rP . Fix k ∈ N and let ψ2

k denote the posterior variance of
a single-player sample. For ν0 ≤ rP , the RHS of (16) is strictly negative, hence VA
is strictly increasing in ψ. Therefore the optimal sample is the single-player sample.
If ν0 > rP , VA is single-troughed in ψ, with the trough at ψ2 = (rP − rA)(ν0 − rP ).
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Therefore, the agent chooses either ψ = 0 or ψ = ψk. The agent prefers ψ = ψk to
ψ = 0 if and only if

λ

(
ν0 − rP
ψk

)
:=

ϕ
(
ν0−rP
ψk

)
1− Φ

(
ν0−rP
ψk

) > ν0 − rA
ψk

=
ν0 − rP
ψk

+
rP − rA
ψk

(17)

where λ is the inverse Mill’s ratio. By (16) at ν0 = rP , agent prefers ψk: hence (17)
implies λ(0) > (rP − rA)/ψk. But λ′(·) ∈ (0, 1), strictly increasing, and λ

(
ν0−rP
ψ

)
→

ν0−rP
ψ for ν0 sufficiently high. Hence, there exists ν̄0 > rP such that (17) holds for

any ν0 < ν̄0.

The argument for rP < rA follows a similar argument and is therefore omitted.

(ii) First, observe that ψk′ ≥ ψk for any k′ > k. Let ν̄0(k) denote the corresponding cutoff
from part (i). At ν0 = ν̄0(k) the agent is indifferent between providing ψ = 0 and
ψ = ψk. Hence he strictly prefers higher posterior variance ψk′ . This implies that
ν̄0(k

′) ≥ ν̄0(k). Moreover, note that

ψ2
k →

∫
A

∫
A
σ(a, a′)ωi(a)ωi(a

′) dada′ := ψ2
∞ <∞

as k → ∞. For any ν0 such that ψ2
∞ < (rP − rA)(ν0 − rP ), ψ(a∗) = 0. Hence, ν̄0(k)

converges to a finite limit ν̄0. A similar argument establishes that ν0(k) is decreasing
in k and converges to a finite limit ν0 > −∞ as k → ∞.

Proof for proposition 4.3. Let ν0 := νA0 and ψ(a) := ψP (a) = ψA(a). From theorem 4.1,
the agent’s payoff simplifies to

VA(a) = rA + (ν0 − r)Φ

(
−ν0 − r

ψ(a)

)
− ψ(a)ϕ

(
−ν0 − r

ψ(a)

)
.

The agent’s payoff is increasing in ψ(a) if and only if

ψ(a)2 ≤ −2r(r + ν0). (18)

Fixing ν0 and r, VA is single-peaked in ψ, with the peak at ψ̂ =
√

−2r(r + ν0). Let ψ2
k

denote the posterior variance of the single-player sample with capacity k.
(1) For r = 0, the RHS of (18) is zero, so the agent’s payoff is strictly decreasing in

posterior variance. Hence, for any k the agent prefers ψ2
0 = 0 to any ψ2

k > 0.

(2) Fix r > 0. If ν0 ≥ −r, the RHS of (18) is negative. Hence, the agent’s payoff is
strictly decreasing in posterior variance. No attributes are sampled optimally.

Consider ν0+r < 0. If ν0 is such that ψ̂2 > ψ2
k, the agent’s payoff is strictly increasing

in ψ for ψ2 ∈ [0, ψ2
k], hence the optimal sample consists of the single-player sample.
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But ψ̂2 > ψ2
k ⇔ ν0 < −r−ψ2

k/(2r). If, on the other hand, ψ̂2 < ψ2
k, the agent’s payoff

is maximized at posterior variance ψ2 = ψ̂2. The argument for r < 0 is similar.
(3) Consider r > 0. For any k′ > k, ψ2

k′ ≥ ψ2
k. Fixing ν0 < −r, if the agent prefers ψ̂2

under k, he prefers it under k′ > k as well. Therefore, ν0(k) decreases with k. A
similar argument shows that for r > 0, ν̄0(k) increases with k.

Lemma C.1 (Indifferent principal). If νP0 = rP and the principal adopts with probability
γ > 1/2 (resp., γ < 1/2) in the absence of any sampling, then the agent forgoes sampling
for νA0 sufficiently high (resp., low) and maximizes α2(·) otherwise. If γ = 1/2, for any
νA0 ∈ R the agent forgoes sampling if and only if all feasible samples are controversial.

Proof of lemma C.1. Suppose that if νP0 = rP principal mixes between adoption and rejec-
tion with probabilities (γ, 1 − γ) where γ ∈ [0, 1]. For any a ∈ Ak, VA(a) = rA + 1

2(ν
A
0 −

rA) + α2(a)ϕ(0). Therefore, the optimal sample solve

a∗ ∈ arg max
a∈Ak

α2(a).

The agent prefers sampling to forgoing sampling if and only if(νA0 − rA) (γ − 1/2) ≤ maxa∈Ak
α2(a)ϕ(0) if γ > 1/2

(rA − νA0 ) (1/2− γ) ≤ maxa∈Ak
α2(a)ϕ(0) if γ < 1/2.

If γ = 1/2, VA(a) = VA(∅) + α2(a)ϕ(0). This is strictly greater than VA(∅) if and only if
α2(a) > 0. Hence, agent forgoes a ∈ Ak if and only if α2(a) ≤ 0.

Proof of proposition 4.4.
(1) Suppose players are in prior disagreement and a∗ is dominated, i.e. ∃ã ̸= a∗, ã ∈ Ak

such that α1(ã) ≥ α1(a
∗) and α2(ã) ≥ α2(a

∗) with at least one strict inequality. Without
loss, suppose both are strict and νP0 − rP > 0 > νA0 − rA. Then,

(νA0 − rA)

(
Φ

(
νP0 − rP
α1(ã)

)
− Φ

(
νP0 − rP
α1(a∗)

))
> 0

and
α2(ã)ϕ

(
νP0 − rP
α1(ã)

)
> α2(a

∗)ϕ

(
νP0 − rP
α1(a∗)

)
.

This contradicts the optimality of a∗.
(2) Without loss, suppose νA0 > rA, νP0 > rP , and γ > 1/2 for an ex ante indifferent princi-
pal. We first show that it is without loss to restrict attention to the set {a ∈ Ak : α2(a) ≥ 0},
which is non-empty by condition (ii).
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Claim 3. If players are in prior agreement, then ρ(a∗) > 0 for any optimal sample a∗ ∈ Ak.

Proof. Without loss, consider νi0 > ri for i = A,P . By contradiction suppose that ρ(a∗) ≤ 0

for an optimal a∗. The agent prefers a∗ to no sampling if and only if

ρ(a∗)ψA(a
∗)

ϕ
(
νP0 −rP
ψP (a∗)

)
1− Φ

(
νP0 −rP
ψP (a∗)

) ≥ νA0 − rA.

The LHS is weakly negative due to ρ(a∗) ≤ 0, whereas the RHS is strictly positive. This
contradicts the optimality of a∗. So for any optimal sample a∗, ρ(a∗) > 0.

VA(a) is continuous in (νA0 , ν
P
0 ). Moreover the set of feasible pairs {(α1(a), α2(a)) : a ∈

Ak} is closed and bounded by the continuity of covariance σ on A = [0, 1]d, as well as
constant in (νA0 , ν

P
0 ). By the Maximum Theorem, VA(a) is continuous in (νA0 , ν

P
0 ) and the

set of optimal samples is upper hemicontinuous and compact in (νA0 , ν
P
0 ).

By lemma C.1, the agent samples an α2-maximal sample if νP0 = rP and (νA0 − rA) is
sufficiently close to zero. For the rest of this argument, let a∗+ denote a α2-maximal sample
that attains the highest informativeness for the principal α1.

Fix νP0 − rP < ϵ where ϵ > 0 small. Then for any νA0 > rA there exists δ > 0 such that
a∗ is within Euclidean distance δ from a∗+ in the (α1, α2)-plane. The agent’s payoff strictly
increases from a slight modification of a∗+ in a direction at which dα1(a

∗
+) < 0 iff

(νP0 − rP )
(
(νP0 − rP )α2(a

∗
+)− (νA0 − rA)α1(a

∗
+)
)
dα1(a

∗
+) + α1(a

∗
+) dα2(a

∗
+) > 0

⇔ νP0 − rP
α1(a∗+)

(
νP0 − rP
α1(a∗+)

− νA0 − rA
α2(a∗+)

)
< −

dα2(a
∗
+)/α2(a

∗
+)

dα1(a∗+)/α1(a∗+)
. (19)

On the other hand, for agent to strictly prefer a∗+ to no sampling it must be that

νA0 − rA
α2(a∗+)

<
ϕ
(
νP0 −rP
ψP (a∗

+)

)
1− Φ

(
νP0 −rP
ψP (a∗

+)

) (20)

Such a modification of a∗+ is feasible because of condition (iii). From any such modification,
dα2(a

∗) ≤ 0 because a∗+ is α2-maximal. For νA0 and νP0 to satisfy both (19) and (20), νP0
should be sufficiently close to rP and

νP0 − rP
α1(a∗+)

<
νA0 − rA
α1(a∗+)

<
ϕ
(
νP0 −rP
ψP (a∗

+)

)
1− Φ

(
νP0 −rP
ψP (a∗

+)

) .
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For any νP0 there exists νA0 that satisfies these inequalities because for any x ≥ 0 ϕ(x)/(1−
Φ(x)) > x. Moreover, at any such (νP0 , ν

A
0 ) modifying a∗+ so that dα1(a

∗
+) > 0 strictly

decreases the principal’s payoff. Therefore, α2(a
∗) ≤ α2(a

∗
+) and α1(a

∗) ≤ α1(a
∗
+), with at

least one strict inequality.

Proof for proposition 4.5. (i) By way of contradiction, let players be in prior agreement
and ρ(a∗) < 0 for an optimal a∗. Suppose first νi0 − ri > 0 for i = A,P . The agent
prefers sampling to no sampling iff

max
a∈Ak

ρ(a)ψA(a)λ

(
νP0 − rP
ψP (a)

)
≥ νA0 − rA.

For any informative a ∈ Ak, ψA(a) > 0. Hence, the agent prefers no sampling to a∗:
this contradicts the optimality of a∗. Therefore, ρ(a∗) > 0. If instead νi0 − ri < 0 for
i = A,P , the agent prefers sampling to no sampling iff

max
a∈Ak

ρ(a)ψA(a)λ

(
−ν

P
0 − rP
ψP (a)

)
≥ rA − νA0 .

Because rA − νA0 > 0, ρ(a∗) > 0 for any optimal a∗.
(ii) This follows immediately from the proof of part (i).
(iii) Suppose there exist another sample ã ∈ Ak such that ρ(ã) > 0 and it dominates

the optimal sample a∗ in both sufficient statistics. Because α1(ã) ≥ α1(a
∗) and

sgn(νA0 − rA) ̸= sgn(νP0 − rP ),

(νA0 − rA)

(
Φ

(
νP0 − rP
α1(a∗)

)
− Φ

(
νP0 − rP
α1(ã)

))
≤ 0.

Moreover, α2(ã) > 0 and α2(ã) ≥ α2(a
∗) implies that

α2(a
∗)ϕ

(
νP0 − rP
α1(a∗)

)
− α2(ã)ϕ

(
νP0 − rP
α1(ã)

)
≤ 0.

If at least one of these inequalities holds strictly, VA(ã) > VA(a
∗), which contradicts

the optimality of a∗.
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