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E Supplementary material for section 2

E.1 Two remarks on sample-path continuity of Gaussian processes

Remark E.1 (Independent attributes). Let σ̃(a, a) = 1 and σ̃(a, a′) = 0 for any two distinct
a, a′ ∈ A. This is ruled out by assumption 1. In fact, a zero-mean GP with such σ̃ has
discontinuous sample paths.

Remark E.2 (Stationary GPs that are sample-path continuous). Let σ(a, a′) =: g(|a− a′|)
be the distance-based covariance of a stationary Gaussian process. To check that the process
is sample-path continuous, one only needs to check that:

(i) g is continuous at zero, i.e. limτ→0 g(τ) = g(0);

(ii) there exist β,K > 0 such that for any feasible distance τ such that 0 ≤ τ ≤ maxa,a′∈A |a−
a′|, g(0)− g(τ) ≤ Kτd+β.

Condition (i) guarantees that g is continuous and the process is mean-square continuous
everywhere. Condition (ii) follows from proposition A.1.

E.2 Unit sum of attribute weights

In the following result, let d∗(νP (a, f(a))) ∈ ∆({0, 1}) denote the principal’s best response
to (a, f(a)), where d∗(·) = 1 denotes adoption.

Lemma E.1. Fix k ∈ N, σ : A×A → R, and (ωA, ωP , rA, rP ). If (a∗, d∗) is an equilibrium
for (ωA, ωP , rA, rP ), then it is also an equilibrium for (ω̃A, ω̃P , r̃A, r̃P ) defined as

ω̃i(a) :=
ωi(a)

Ωi
, r̃i :=

ri
Ωi

∀i = A,P,

where
Ωi :=

∫
A
ωi(a) da.

Proof. By the Lebesgue-integrability of ωi, |Ωi| < ∞ for each i. Therefore, ω̃i and r̃i are
well-defined. It follows that ν̃i0 = νi0/Ωi and τ̃ ij(a) = τ ij(a)/Ωi for any i = A,P , any a =

(a1, . . . , an) ∈ Ak, and any j ≤ n. This implies that for any a ∈ Ak, ψ̃i(a) = ψi(a)/Ωi and
ρ̃(a) = ρ(a). From lemma 4.1, for any given a ∈ Ak the agent’s payoff is

VA(a) = rA + (νA0 − rA)Φ

(
νP0 − rP
α1(a)

)
+ α2(a)ϕ

(
νP0 − rP
α1(a)

)
.

Hence ṼA(a) = VA(a)/ΩA. If a∗ maximizes VA(a), then it also maximizes ṼA(a). Moreover,
for any (a, f(a)) if νP (a, f(a))− rP ≥ 0 then ν̃P (a, f(a))− r̃P ≥ 0 as well. a
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E.3 Observational noise

Fix a sample a ∈ Ak and noisy observations y(a) = f(a)+ϵ(a) where ϵ(a) ∼ N (µ0(a), η2(a))

for observational bias µ0(·) and noise variance η2(·). Figure 1 illustrates interpolation with
observational noise for the Brownian motion.
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Figure 1: Extrapolation across a standard Brownian path with η = 0 (red) and η = 0.25 (blue). Sample
a = (1/4, 1/2, 3/4). Also, µ0(a) = 0 and µ(a) = 0 for all a ∈ [0, 1].

Corollary E.2. The set of single-player samples does not depend on observational bias µ0.
Moreover it is the same for both simultaneous and sequential sampling.

Proof. Fix a sample a = (a1, . . . , ak) ∈ Ak. The observations are distributed according to

y(a1)...
y(ak)

 ∼ N


µ(a1) + µ0(a1)

...
µ(ak) + µ0(ak)

 ,

σ(a1, a1) + η2(a1) . . . σ(a1, ak)
... . . . ...

σ(a1, ak) . . . σ(ak, ak) + η2(ak)


 .

Following lemma 2.1, τj(â;a) is now the (1, j)th entry of matrix

(
σ(a1, â) . . . σ(ak, â)

)

σ(a1, a1) + η2(a1) σ(a1, a2) . . . σ(a1, ak)

σ(a1, a2) σ(a2, a2) + η2(a2) . . . . . .
...

... . . . ...
σ(a1, ak) σ(a2, ak) . . . σ(ak, ak) + η2(ak)

 .

The posterior variance is as in equation (8), where τj(a) is derived from τj(â;a) above. As
in theorem 3.1(iii), µ0 enters neither posterior variance nor the single-player sample.

Example E.1 (Noisier observations, more uncertain attributes). Let k = 1 and consider
the Brownian covariance σbr from section F.1. Let ω(a) = 1 for all a ∈ [0, 1]. Suppose
observations are of the form y(a) = f(a) + ϵ, where ϵ ∼ N (0, η2). As expected, for any
sample a ∈ [0, 1] ψ2(a) is decreasing in noise η2. The optimal sample a∗(η) is pinned down
by

a∗(η) (3a∗(η)− 2)− 4 (1− a∗(η)) η2 = 0.

3



From section F.1, a∗(0) = 2/3. So by implicit differentiation with respect to η:

∂a∗(η)

∂η
=

4η(1− a∗(η))

3a∗(η) + 2η2 − 1
> 0 for a∗ ∈ (1/3, 1), η > 0.

Therefore, the higher η2 is, the further away the single-player sample is from the benchmark
attribute ā = 0. In the presence of greater observational noise, the player seeks attributes
that are ex ante more uncertain.

E.4 A violation of assumption 2

Consider linear covariance σlin(a, a′) = 1 + aa′, ω(a) = 1 for any a ∈ [0, 1], and k = 1. For
any a = (a),

τ(a) =

∫ 1

0
τ(â;a) da =

∫ 1

0

1 + aâ

1 + a2
dâ =

2 + a

2(1 + a2)
.

It is immediate then that the posterior variance is ψ2(a) = (2 + a)2/4(1 + a2). This posterior
variance is maximized at a∗ = 1/2, with corresponding ψ2(1/2) = 5/4. But note that k = 1

is sufficient to learn the true value of the project because its ex-ante uncertainty is exactly

Var(v) =
∫ 1

0

∫ 1

0
σlin(a, a

′) da da′ = 5/4.

Note that there is non-zero residual uncertainty about individual attributes after sampling
a∗: the ex-post variance of f(â) is (â− a∗)2/(1 + a∗2).

F Other examples of single-player sampling

F.1 Brownian covariance

This example considers a covariance function that naturally encodes the presence of prior
knowledge about some attributes. A benchmark attribute is an attribute ā ∈ A = [0, 1] such
that (i) f(ā) is ex ante known, i.e. σ(ā, ā) = 0, (ii) f(ā) determines the player’s expectation
for all other attribute realizations, and (iii) the variance of each attribute realization f(a) is
proportional to a’s distance from ā. That is, the covariance is given by

σā(a, a
′) =


min(a− ā, a′ − ā) if a, a′ ≥ ā

min(ā− a, ā− a′) if a, a′ ≤ ā

0 if a < ā < a′ or a′ < ā < a.

(1)

This covariance function corresponds to f being a Brownian path.1 Figure 2a illustrates
1To be precise, attribute mappings that result from σā follow two independent Brownian motions X1(a−ā)
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that if the attribute mapping is a Brownian path extrapolation from a sample is linear and
traverses the benchmark realization f(ā).

Given sample a, let ā = (a1, . . . , ak+1) denote the expanded sample that consists of a and
ā, ordered and reindexed so that a1 < . . . < ak+1. Effectively, the presence of a benchmark
attribute gives an attribute for free to the player.

Lemma F.1. Fix ā = (a1, . . . , ak+1) so that 0 ≤ a1 < . . . < ak+1 ≤ 1. Sample realization
f(aj) is weighted by

τj(ā) =


(a1 + a2)/2 if j = 1

(aj+1 − aj−1)/(2) if j ∈ {2, . . . , k}

(ak + ak+1)/2 if j = k + 1.

Proof for lemma F.1. Without loss, we let ā = 0 and µ(a) = 0 for all a ∈ [0, 1]. Hence,
f(ā) = 0 as well. We first characterize the precision matrix for any sample a.

Claim 1. Fix a = (a1, . . . , ak) such that 0 < a1 < . . . < ak ≤ 1. The (i, j)th entry of the
sample precision matrix P (a) := [Σ(a)]−1 is given by

pij =


1

ai − ai−1
+

1

ai+1 − ai
for j = i

− 1

|aj − ai|
for j = i± 1

0 otherwise

where a0 = 0 and ak+1 = +∞.

Proof. Fix a = (a1, . . . , ak). With some abuse of notation, let f(a \B) denote the vector of
realizations for all sample attributes other than those in B. We use two facts: (i) pii is the the
reciprocal of the conditional variance of f(ai) given f(a \ ai), and (ii) pij is the conditional
covariance of f(ai) and f(aj) given f(a\{ai, aj}) (Theorem 2.3 in Rue and Held (2005)). So

Var (f(ai) | f(a \ ai)) =
(ai − ai−1)(ai+1 − ai)

ai+1 − ai−1

⇒ pii =
1

Var (f(ai) | f(a \ ai))
=

1

ai − ai−1
+

1

ai+1 − ai
.

where a0 = 0 and ak+1 = +∞. This gives us the diagonal entries of Σ−1(a). For off-diagonal

and X2(ā−a) defined on domains [ā, 1] and [0, ā] respectively. As in Callander (2011), attribute realizations
between any two known sample realizations follow a Brownian bridge.
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terms, for any aj , ai ∈ a

Cov (f(ai), f(aj) | f(a \ {ai, aj})) = − pij
piipjj − p2ij

.

By the Markov property of the Brownian motion, f(ai+1) and f(ai−1) are independent con-
ditional on f(ai) for any i. Hence, pij = 0 for any i, j such that |i − j| > 1. Consider first
ak−1 and ak:

Cov (f(ak−1), f(ak) | f(a \ {ak−1, ak})) = ak−1 − ak−2 ⇒ pk−1,k = − 1

ak − ak−1
.

There are two solutions for pk−1,k, one of which is the one above and the other is pk−1,k =

−pk−1,k−1. In order for Σ−1(a) to be non-singular, and hence invertible, we need that
piipjj − p2ij ≥ 0. The latter solution is therefore inadmissible. For any i < k,

Cov (f(ai−1), f(ai) | f(a \ {ai−1, ai})) =
(ai−1 − ai−2)(ai+1 − ai)

ai+1 − ai−2

applying the formula for the conditional covariance of the multivariate normal distribution
of the sample. Therefore, the two solutions for pi−1,i are:

p∗i−1,i = − 1

ai − ai−1
, p∗∗i−1,i = − (ai − ai−2)(ai+1 − ai−1)

(ai+1 − ai)(ai − ai−1)(ai−1 − ai−2)
.

Of the two solutions, again, only p∗i−1,i is admissible because it is the only one to guarantee
that Σ−1(a) is non-singular.

Take a ∈ (ai, ai+1) for i = 0, . . . , k − 1. The weight given to attribute realization f(ai) is

τi(a;a) = σ(ai, a)pii +
∑
j ̸=i

pijσ(aj , a)

= σ(ai, a)pii + σ(a, ai−1)pi−1,i + σ(ai+1, a)pi,i+1

= ai

(
1

ai − ai−1
+

1

ai+1 − ai

)
− ai−1

1

ai − ai−1
− a

1

ai+1 − ai

=
ai+1 − a

ai+1 − ai
.

From a similar calculation, τi+1(a;a) = (a− ai)/(ai+1 − ai) and τj(a;a) = 0 for any j ̸=
i, i+1. For a ∈ (ak, 1), τk(a;a) = 1 and τj(a;a) = 0 for all j ̸= k. Integrating as in equation
(6) in lemma 2.2, we obtain τj(a) for all j = 1, . . . , k.
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Lemma F.1 makes precise the local nature of extrapolation that characterizes the Brow-
nian covariance. An interior attribute aj ∈ ā is useful only insofar as it is informative about
attributes to its immediate left and right in [aj−1, aj ] and [aj , aj+1]. Therefore, when all
attributes are equally important to the player, realization f(aj) is weighted proportionally
to the mass of attributes it is informative about. Note, also, that f(a1) and f(ak+1) are the
only sources of information for peripheral attributes in [0, a1] and [ak+1, 1] respectively.

(a) The true mapping is in grey and the ex-
trapolated mapping in red. Sample attributes:
a = (1/6, 3/6, 4/6, 5/6).
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(b) Single-player sample for k ∈ {1, . . . , 5}
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Figure 2: Benchmark attribute ā = 1/3, f(ā) = 0, σ1/3 and µ(a) = 0 for all a ∈ [0, 1].

Proposition F.2 characterizes the optimal sample, illustrated in Figure 2b for ā = 1/3.
The single-player sample is not equally spaced in [0, ā] and [ā, 1]: attributes are systematically
closer to peripheral attributes a = 0 and a = 1 to account for the fact that f(ā) is known.
Moreover, as capacity increases from k to k′ > k, the single-player sample for k′ has weakly
more attributes on each side of ā than that for k.2

Proposition F.2 (Quasi-representative sampling). The single-player sample a∗ = (a∗1, . . . , a
∗
k),

where a∗1 < . . . < a∗m < ā < a∗m+1 < . . . < a∗k, consists of

a∗j =


ā− 2(m− j + 1)

2m+ 1
ā if j ≤ m

ā+
2(j −m)

2(k −m) + 1
(1− ā) if j ≥ m+ 1

and m ∈ N solves

max
0≤m≤k

4

3

(
ā3
m(m+ 1)

(2m+ 1)2
+ (1− ā)3

(k −m)(k −m+ 1)

(2(k −m) + 1)2

)
.

Proof for proposition F.2. Consider a subsample an of size n in (ā, 1]. Let ϵj := aj − aj−1

2Moreover, the single-player sample satisfies a zig-zag property: e.g., as the number of attributes in [0, ā]
goes from m to m+1 and the single-player sample from a to a′, a′

j < aj for j = 1, . . . ,m and a′
m+1 ∈ (am, ā).
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for j = 1, . . . , n. Using lemma F.1, the posterior variance of this subsample is

ψ2(an) =

n∑
j=1

ϵj

(
1− ā−

j−1∑
h=1

ϵh − ϵj/2

)2

=:

n∑
j=1

ϵj (Tj − ϵj/2)
2 ,

where Tj denotes the remaining distance from aj to 1. Taking the first-order condition with
respect to ϵj for j = 1, . . . , n and solving backwards from ϵ∗n, we obtain

ϵ∗n−j =
2

2j + 3
Tn−j .

Hence ϵ∗1 = 2/(2(n− 1) + 3)(1− ā) and all distances are equal, i.e. ϵ∗j = 2/(2n+ 1)(1− ā).

Therefore, the constrained-optimal sample a∗n = (a∗1, . . . , a
∗
n) is given by

a∗j = ā+
2j

2n+ 1
(1− ā).

Therefore, fixing n ≤ k the maximal posterior variance on [ā, 1] is

ψ2(a∗n) =
4

3
(1− ā)3

n(n+ 1)

(2n+ 1)2
.

Due to the fact that the Brownian motions on [0, ā] and [ā, 1] are independent, the optimal
sample a∗ on [0, 1] solves

max
0≤m≤k,m∈N

4

3

(
ā3
m(m+ 1)

(2m+ 1)2
+ (1− ā)3

(k −m)(k −m+ 1)

(2(k −m) + 1)2

)
.

This characterization implies that small changes in the benchmark attribute ā might
result in drastically different sampling patterns. Take, for instance, two benchmark attributes
ā = 1/2 − ϵ and ā′ = 1/2 + ϵ for ϵ > 0 arbitrarily small and k = 1. As ϵ shrinks to zero
a∗(ā) → 5/6 but a∗(ā′) → 1/6. That is, two ex-ante comparable projects are evaluated based
on very different sets of attributes.

Lastly, it is worth emphasizing that this exercise could easily incorporate prior uncertainty
about the benchmark, e.g. f(ā) ∼ N (µ̄, σ̄2) for σ̄ > 0. The variance of any realization f(a)

now becomes σ̄2 + |a− ā|. The uncertainty about each attribute is still proportional to that
attribute’s distance from ā. Therefore single-player sampling is qualitatively the same as in
proposition F.2.
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F.2 Polynomial covariance

This example considers a simple non-Markovian covariance for which extrapolation is non-
local and the project can be fully learned with sufficiently large capacity. Let

σqd(a, a
′) = (1 + aa′)2 for a, a′ ∈ [0, 1]. (2)

Figure 3a illustrates the shape of attribute mappings that result from this covariance. The
total ex-ante uncertainty about the value of a project described by σqd is:

Var(v) =
∫ 1

0

∫ 1

0
σqd(a, a

′) da da′ =
29

18
.

Fix k = 1 first. Given a singleton sample a = (a), τ1(â;a) = (1 + aâ)2/(1 + a2)2 for any
â ∈ [0, 1]. The extrapolated mapping is strictly decreasing if and only if f(a) < 0 (Figure 3b).
The weight given to the sample attribute and the posterior variance are respectively

τ1(a) =
3 + a(3 + a)

3(1 + a2)2
> 0, ψ2(a) =

(
(1 + a)3 − 1

)2
9a2(1 + a2)2

.

It follows that the optimal sample consists of a∗ =
(√

13− 2
)
/3 ≈ 0.54, attaining ψ2(a∗) ≈

1.607. Strikingly, the player’s ability to learn a single attribute is very valuable, as its
realization removes about 99.7% of the ex-ante uncertainty about the project.
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(b) Singleton sample a = (1/2)

Figure 3: Quadratic covariance σqd(a, a
′) = (1 + aa′)2 and µ(a) = 0 for all a, a′ ∈ [0, 1]

A similar calculation for k = 2 – collected in lemma F.3 – reveals that the optimal
two-attribute sample consists of a∗1 = 5/32 and a∗2 = 49/66. The posterior variance that
this sample attains is 29/18, which is exactly equal to the ex-ante uncertainty about the
project Var(v). Therefore, the area under the parabolic attribute mapping resulting from σqd

can be fully learned from the realizations of two optimally selected attributes. The sample
a∗ = (5/32, 49/66) is optimal for any k > 2 as well.
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Lemma F.3. Fix polynomial covariance σqd(a, a
′) = (1 + aa′)2 for all a, a′ ∈ [0, 1] and

sample a = (a1, a2) s.t. a1 < a2. Then, f(a1) and f(a2) are weighted respectively by

τ1(a) =
3 + a1 − 5a2 − a1a

2
2 − 3(1 + a1)a

3
2

3(a1 − a2)(2 + 2a1a2 + a22 + a21(1 + 2a22))
,

τ2(a) = − 3 + a2 − 5a1 − a2a
2
1 − 3(1 + a2)a

3
1

3(a1 − a2)(2 + 2a1a2 + a22 + a21(1 + 2a22))
.

The posterior variance of a is

ψ2(a) =
27 + 2a2(3 + 5a2) + 2a1(3 + a2(4 + 9a2)) + a21(10 + a2(18 + 11a2))

9(2 + 2a1a2 + a22 + a21(1 + 2a22))

and it is maximized at a∗ = (5/32, 49/66), with corresponding ψ2(a∗) = 29/18.

Proof. From a direct application of lemma 2.1, we obtain

τ1(â;a) =
a2 − â

a2 − a1

2 + a2(a2 + â) + a1(a2 + â+ 2a22â)

2 + 2a1a2 + a22 + a21(1 + 2a22)
,

τ2(â;a) =
â− a1
a2 − a1

2 + a1(a1 + a2) + â(a1 + a2 + 2a21a2)

2 + 2a1a2 + a22 + a21(1 + 2a22)
.

By integrating with respect to â, we obtain τ1(a) and τ2(a). Posterior variance ψ2(a) follows
from a direct application of (8).

G Supplementary material for section 5 (Site selection)

G.1 Formal results and proofs on strategic site selection

To reiterate, the evaluator’s prior value is the expected realization at his site νP0 = µ(aP ) :=

µP . The researcher’s prior value is the average expected outcome

νA0 =

∫ 1

0
µ(a) da =: µ̄.

Because any singleton site correlates the players’ posterior values perfectly, the sufficient
statistics pair corresponding to a ∈ [0, 1] simplifies to (α1(a), α2(a)) = (ψP (a), ψA(a)). Each
site is described by the pair of posterior variances it induces. Figure 4 plots the single-peaked
sufficient statistics and the corresponding single-player optima.

Optimal selection of a compromise site. We refer to the interval [1/2, aP ] as compromise
sites: slightly shifting the pilot site within this interval strictly increases informativeness for
one player and decreases it for the other. As Figure 4 depicts, ψA is strictly decreasing and
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Figure 4: The plots show (α1(·), α2(·)) for aP = 1/2 (left) and aP = 4/5 (right) when ℓ = 1/2. The blue
and red dots show single-agent site and single-principal site respectively.

ψP is strictly increasing over the compromise region, so there is a sharp tradeoff between the
two sufficient statistics. If aP = 1/2, the compromise interval collapses to the median site.

Let a∗(µP , µ̄) denote the optimal site given players’ prior values. Corollary G.1, which
follows from proposition 4.5, shows that prior disagreement always leads to the optimal
selection of a compromise site. That is because – all else fixed – under prior disagreement the
researcher’s payoff is increasing in ψP : higher variance in the evaluator’s decision increases
the likelihood that it coincides with the decision suggested by µ̄. At any site that is not a
compromise, ψA and ψP are either both strictly increasing or both strictly decreasing. The
exact tradeoff between ψA and ψP within the compromise region – and hence a∗(µP , µ̄) –
is generically determined by the relative magnitudes of µP and µ̄. In the special case of
aP = 1/2, the optimal site is exactly the median site.

Corollary G.1 (Compromise site selection).

(i) For µP ≶ 0 and µ̄ ≷ 0, the optimal site is a compromise: a∗(µP , µ̄) ∈ [1/2, aP ].

(ii) For any µ̄ ∈ R, a∗(0, µ̄) = 1/2.

(iii) For µ̄ = 0, the optimal site a∗(µP , 0) is increasing in |µP | and a∗(µP , 0) = a∗(−µP , 0)
for any µP . For sufficiently large |µP |, a∗(µP , 0) = aP .

Proof of corollary G.1. We first show that posterior variances are single-peaked in a. For any
a ∈ A, ψA(a) = ℓ

(
2− e−(1−a)/ℓ − e−a/ℓ

)
and ψP (a) = e−|a−aP |/ℓ. It is immediate that ψA is

strictly increasing for a < 1/2 and strictly decreasing for a > 1/2. On the other hand, ψP is
strictly increasing for a < aP and strictly decreasing for a > aP . The rest of the argument
follows from proposition 4.5 and lemma C.1.

Optimal selection of a peripheral site. The possibility of an optimal site that is not a
compromise arises if players are in ex ante agreement. Figure 6b plots the unique optimal
site as a function of µP . For |µP | sufficiently close to zero, the optimal site is to the left of the
median site and hence further away from aP than the median site. The researcher undershoots
his preferred site to influence a skeptical evaluator. As |µP | increases, the optimum returns
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into the compromise region. For sufficiently high |µP | the optimal site is aP . Corollary G.2
establishes that this pattern of site selection holds generally. In fact, it holds even when the
median site is the most informative site for both players.

Corollary G.2 (Peripheral site selection). Suppose that players are in ex ante agreement.

(i) For aP > 1/2 and µP sufficiently close to zero, a∗(µP , µ̄) < 1/2.

(ii) For aP = 1/2 and µP sufficiently close to zero, there are exactly two optimal sites and
they are equidistant from the median site.

Proof. (i) Without loss, let µ̄ > 0. The researcher’s payoff is strictly decreasing at a = 1/2

iff
µP

(
−e−1/ℓµ̄+ 2eaP /ℓ

(
e1/(2ℓ) − 1

)
ℓµP

)
< 0.

Because µ̄ > 0, this inequality holds for µP > 0 close to zero. But from proposition G.1,
a∗(0, µ̄) = 1/2 for any µ̄. Hence, by the continuity of the optimal site in (µP , µ̄), a∗(µP , µ̄) <
1/2 for µP sufficiently close to zero. The optimal site solves

e(1+2a)/ℓ − e4a/ℓ =
e(1+2a+aP )/ℓ

ℓ
µ̄µP + e2aP ℓ

(
e1/ℓ + e2a/ℓ − 2e(1+a)/ℓ

)
µP

2. (3)

(ii) Let aP = 1/2. It is straightforward to verify that if equation (3) holds for a = 1/2+ϵ then
it also holds for a′ = 1/2−ϵ, where ϵ ∈ (0, 1/2). Moreover, the researcher’s payoff has a strict
local minimum at the median site if and only if µ(1/2)

(
2ℓµ(1/2)

(
e1/(2ℓ) − 1

)
− e1/(2ℓ)µ̄

)
< 0

which holds if (i) µP = µ(1/2) and µ̄ have the same sign, and (ii) |µ(1/2)| is sufficiently
small.

(a) ℓ = 1/10 (b) ℓ = 1/5 (c) ℓ = 1/2

Figure 5: Optimal site for aP = 1/2, µ̄ = 1/2, rA = rP = 0, and ℓ ∈ {1/10, 1/5, 1/2}.

Distortions are largest for moderate correlation. Figure 5 illustrates optimal site
selection for aP = 1/2: due to the symmetry of the Ornstein-Uhlenbeck process, there are
at most two optimal sites symmetric around the median site. As correlation across sites
becomes either arbitrarily strong (ℓ → +∞) or arbitrarily weak (ℓ → 0) distortions vanish.
For any µP ∈ R, the optimal site converges to the median site. Site selection is no longer an
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effective instrument for influencing the evaluator’s behavior. On the other hand, Figure 5b
illustrates an instance in which moderate correlation leads to selection of the most peripheral
sites {0, 1}. These are the least informative sites for both the researcher and the evaluator,
yet the researcher prefers these sites relative to forgoing pilot evaluations altogether.

G.2 Comparison to random site selection

A natural alternative to purposive site selection is random selection of pilot sites. Yet Olsen
et al. (2013) have observed that the latter is rare in social experiments. Purposive sampling
– purported to generate a more diverse sample than uniform random sampling – is the
preferred approach in practice. They show that of the 273 impact evaluations included in
the Digest of Social Experiments (as compiled in Greenberg and Shroder (2004)), all but 7
featured purposive site selection. Motivated by this fact, we compare purposive site selection
to random selection by a researcher who weighs all sites equally.

Two empirically common random formats for sampling sites are considered – uniform
sampling and stratified uniform sampling – both of which do not make use of covariance
σou and are suboptimal by theorem 3.1.3 The former selects k sites randomly from [0, 1],
whereas the latter divides [0, 1] into k equal-size bins before selecting a site randomly from
each bin. Lemma G.3 derives the expected sample for each format. For instance, for k = 2

the expected uniform sample is (1/3, 2/3), whereas the expected stratified one is (1/4, 3/4).

Lemma G.3 (Random site selection).

(i) (Uniform sample) Suppose ā1, ā2, . . . , āk are drawn independently from U(0, 1), indexed
so that ā1 < ā2 < . . . < āk. Then E[āj ] = j/(k + 1) for any j = 1, . . . , k.

(ii) (Stratified uniform sample) Suppose aj is drawn from U [(j−1)/k, j/k] for j = 1, . . . , k.
Then, E[aj ] = (2j − 1)/(2k).

Proof. (i) The density of the jth-order statistic of a sample of k iid observations from a
continuous cdf F (with density f) is:

fj(a) =
k!

(k − j)!(j − 1)!
F j−1(a)(1− F (a))k−jf(a).

For the uniform distribution with F (a) = a and f(a) = 1, this simplifies to

fj(a) =
k!

(k − j)!(j − 1)!
aj−1(1− a)k−j =

Γ(n+ 1)

Γ(j)Γ(k + 1− j)
aj−1(1− a)(k+1−j)−1

3E.g., the evaluation process of the Job Training Partnership Act of 1982 initially aimed to select sites
in which to conduct the study through either random or stratified random selection “in order to obtain
nationally representative results.” See Hotz (1992).
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which is the pdf of a Beta distribution with parameters (j, k + 1− j). Its mean is therefore
j/(k + 1− j + j) = j/(k + 1).
(ii) The mean of a draw from U [(j − 1)/k, j/k] is (j − 1/2)/k = (2j − 1)/(2k).

Proposition 3.4 in our main analysis already established that the optimal sample is sym-
metric around the median site and any two adjacent sites are equidistant. Proposition G.4
sharpens this characterization by establishing monotonicity and convergence of the optimal
sites. First, the proposition shows that as ℓ increases – i.e. as sites become more similar in
terms of program outcomes and the planner can extrapolate over a longer distance – optimal
sites are farther away from the median site and from each other. The set of pilot sites be-
comes more diverse. The second part of the proposition asserts that the optimal sample of
sites converges to the expected random samples described in lemma G.3 as sites become ar-
bitrarily correlated or independent. Effectively, the expected random samples serve as upper
and lower bounds for the optimal sample.

Proposition G.4 (Monotonicity and convergence to random site selection).

(i) For any j < (k + 1)/2 (resp., j > (k + 1)/2), a∗j (ℓ) is decreasing (increasing) in ℓ.

(ii) As site outcomes approach independence, the single-player sample converges to the
expected uniform sample, i.e. as ℓ→ 0, a∗j (ℓ) → āj for any j = 1, . . . , k.

(iii) As site outcomes approach perfect correlation, the single-player sample converges to the
expected stratified sample, i.e. as ℓ→ +∞, a∗j (ℓ) → aj for any j = 1, . . . , k.

Proof. (i) By proposition 3.4, it is sufficient to establish the monotonicity of a∗1 with respect
to ℓ. By implicit differentiation of the equation

1− e−a∗
1(ℓ)/ℓ = tanh

(
1− 2a∗1(ℓ)

2ℓ(k − 1)

)
with respect to ℓ and straightforward algebraic simplifications, we obtain

∂a∗1(ℓ)

∂ℓ
=

1

2ℓ

2a∗1(ℓ)− 1 +
k − 1

k + tanh
(
1−2a∗

1(ℓ)
2ℓ(k−1)

)
 < 0.

For any k ≥ 2, a∗1(ℓ) < 1/2 satisfies the first-order condition and therefore ∂a∗1(ℓ)/∂ℓ < 0.
Hence a∗1 is strictly increasing in ℓ for any k ≥ 2.

(ii) We want to show that as ℓ→ 0, a∗1 → 1/(k+1). Substituting the standard trigonometric
identity 1+tanh(x)

1−tanh(x) = e2x for x ∈ R into the first-order condition with respect to a∗1, we obtain

2− e−a∗
1/ℓ − e

1−a∗
1(k+1)

ℓ(k−1) = 0. Note that a∗1 < 1/(k + 1) because
(
1− e−a1/ℓ − tanh

(
1−2a1

2ℓ(k−1)

))
is strictly increasing in a1 and
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(
1− e−a1/ℓ − tanh

(
1− 2a1
2ℓ(k − 1)

)) ∣∣∣∣
a1=1/(k+1)

> 0.

Because e−a∗
1/ℓ → 0, for the FOC to hold even as ℓ → 0 we need e

1−a∗
1(k+1)

ℓ(k−1) → 2. Because
1 − a∗1(k + 1) > 0, this implies that 1 − a∗1(k + 1) → 0 as ℓ → 0. Hence, a∗1 → 1/(k + 1) as
ℓ→ 0. Therefore, a∗j → āj for any j = 1, . . . , k as ℓ→ 0.

(iii) We want to show that as ℓ → +∞, a∗1 → 1/(2k). By the FOC with respect to a∗1, we
have

lim
ℓ→+∞

1− e−a∗
1/ℓ

tanh
(

1−2a∗
1

2ℓ(k−1)

) = 1.

Because the numerator and the denominator each converge to zero as ℓ → +∞, we apply
L’Hôpital’s rule:

lim
ℓ→+∞

−a∗
1

ℓ2 e
−a∗

1/ℓ

1−2a∗
1

2ℓ2(k−1)sech2
(

1−2a∗
1

2ℓ(k−1)

) = lim
ℓ→+∞

−2a∗1(k − 1)

1− 2a∗1

e−a∗
1/ℓ

sech2
(

1−2a∗
1

2ℓ(k−1)

) = 1.

As ℓ→ +∞, e−a∗
1/ℓ → 1 and sech2

(
1−2a∗

1

2ℓ(k−1)

)
→ 1. Hence,

lim
ℓ→+∞

−2a∗1(k − 1)

1− 2a∗1
= 1.

This implies that a∗1 → 1/(2k) as ℓ→ +∞. Hence, a∗j → aj for any j = 1, . . . , k.

This result suggests that random site selection with uniform probability leads on average
to a too narrow of a sample when sites are correlated. The procedure does not internalize the
benefits of local extrapolation. But if sites were perfectly independent (ℓ = 0), the planner
would be indifferent among all sets of k sites, so uniform sampling would perform just as
well as any other sampling procedure. On the other hand, stratified sampling is a coarse way
of accounting for local extrapolation by separating sites into bins: hence it leads to a too
extreme of a sample compared to purposive site selection.

H Supplementary material for section 6 (Sample centrality)

Section H.1 constructs the graph and defines useful objects in it. Section H.2 introduces
sample centrality in walk-summable graphs and illustrates it through a simple finite-attribute
example. Section H.3 extends the formulation to non-walk-summable graphs, whereas section
H.4 discusses the relation of sample centrality to existing centrality measures. Because of our
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discussion in section E.2, we consider ω(a) ≥ 0 for all a ∈ A and ω(a) is a density over A:∫
A
ω(a) da = 1.

H.1 Graph construction and basic definitions

Graph. Let G = (A, E) be an undirected and infinite graph, where A := [0, 1]d, d ≥ 1 is the
set of attribute-nodes (hereafter referred to as nodes) and E is the set of weighted edges.4

The weight of an edge aa′ joining nodes a, a′ ∈ A is given by eaa′ := σ(a, a′). Due to unit
variances, an edge weight corresponds to the correlation between the two nodes that it joins.5

Walks, paths, cycles. A walk w of length ℓ ≥ 0 is a sequence of nodes w = (a1, . . . , aℓ, aℓ+1)

such that each edge akak+1 ∈ E for k ∈ {1, . . . , ℓ}. A path π of length ℓ is a sequence
of distinct nodes π = (a1, . . . , aℓ+1) in A. A cycle γ of length ℓ is a sequence of nodes
γ = (a1, . . . , aℓ+1) such that a1 = aℓ+1 and nodes a1, a2 . . . , aℓ are distinct. Let κ(α) denote
the weight of a walk/path/cycle α of length ℓ(α), defined as the product of the weights of
the edges it traverses:6

κ(α) :=

ℓ(α)∏
m=1

σ(am, am+1), α ∈ {w, π, γ}.

A zero-length walk/path/cycle of the form α = (a1) has by definition κ(α) = 1.
Samples of nodes. For a = (a1, . . . , an), let A(a) denote the adjacency matrix for subgraph
Ga consisting of nodes a and edges joining any two nodes in a. The sample covariance matrix
is Σ(a) = I +A(a), where I is the n× n identity matrix. By the Neumann power series for
matrix inversion, the precision matrix for the sample can be written as:

Σ−1(a) = (I +A(a))−1 =

∞∑
ℓ=0

(−1)ℓAℓ(a).

The power series in the right-hand side converges if and only if the spectral radius of matrix
(−A(a)), which we denote by ρ(−A(a)), is strictly less than one.7

The (i, j)
th entry of (−A(a))ℓ corresponds to the sum of weights of all ℓ-length walks

from ai to aj that go exclusively through sample nodes, i.e.
4Covariance σ(a, a′) = 0 implies that no edge joins nodes a and a′. In particular, zero-variance attributes

correspond to isolated nodes. For ease of exposition, we disregard the presence of such attributes.
5The constructed G differs from a Gauss-Markov random field in that (i) it has uncountably many nodes

and (ii) its construction uses covariance σ rather than precision matrices (Rue and Held (2005)).
6Note that we define κ here slightly differently from section 6.
7The spectral radius of a matrix is given by the maximum absolute value of its eigenvalues. One can

easily identify positive definite matrices for which the spectral radius is greater than one.
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((−1)ℓAℓ(a))ij =
∑

w:ai
ℓ,a→aj

(−1)ℓκ(w)

where w : ai
ℓ,a→ aj denotes all walks of length ℓ from ai to aj that only visit nodes in a. We

refer to

(ai
a→ aj) :=

∞∑
ℓ=0

∑
w:ai

ℓ,a→aj

(−1)ℓκ(w)

as the alternating walk sum from ai to aj through sample a.
The alternating walk sum need not always be well-defined, as the walk sum might not

converge to the same value for every possible summation order of the walks. In other words,
Ga might not be walk-summable. Whenever Ga is walk-summable, the (i, j)th entry in Σ−1(a)

can be expressed as the sum of walks of any length from ai ∈ a to aj ∈ a restricted to go
through sample nodes only.
Random subgraph. The constructed graph G is based only on covariance σ. In particular,
it does not use attribute weights ω. In section H.2, we see that ω governs the realization of
a random subgraph G̃ = (a ∪ a ∪ a′, Ea∪a∪a′), where (i) nodes a, a′ are drawn according to
density ω : A → [0, 1], (ii) a is a fixed sample, and (iii) Ea∪a∪a′ is the set of edges linking
nodes in a ∪ a ∪ a′.

H.2 Walk-summable graph

We first define the walk-summability of G in increasing order of generality: with respect to a
given sample, with respect to all samples of a fixed size, and with respect to samples of any
finite size. Our definition of walk-summability is slightly different from others proposed in
the literature – e.g. in Malioutov, Johnson and Willsky (2006) – because we need to consider
convergence of walk sums in the subgraph of each feasible sample. Subsequently, lemma H.1
provides a necessary and sufficient condition for the walk-summability of G.

Definition H.1 (Walk-summability of G).

(i) Fix a. Graph G is a-walk-summable if for any ai, aj ∈ a the alternating walk sum
(ai

a→ aj) converges to the same value for every possible summation order of walks.

(ii) For any n ∈ N, G is n-walk-summable iff it is a-walk-summable for any n-sample a.

(iii) G is walk-summable if it is n-walk-summable for any n ∈ N.

Lemma H.1. Graph G is a-walk-summable if and only if ρ(Ā(a)) < 1, where Ā(a)ij :=

|A(a)ij | for any i, j.

17



Proof for lemma H.1. Fix a finite sample a and ai, aj ∈ a. The unordered sum∑
ℓ

∑
w:ai

ℓ,a→aj

(−1)ℓκ(w)

converges to the same value despite the order of summation if and only if it converges abso-
lutely, i.e. the sum of absolute terms∑

w:ai
a→aj

|(−1)ℓκ(w)| =
∑

w:ai
a→aj

|κ(w)|

converges. The following lemma shows that absolute convergence is equivalent to convergence
of
∑

ℓ Ā
ℓ(a). In turn, convergence of

∑
ℓ Ā

ℓ(a) is equivalent to ρ(Ā(a)) < 1, which gives the
desired result.

Lemma H.2.
∑

w:ai
a→aj

|κ(w)| converges if and only if
∑∞

ℓ=0 Ā
ℓ(a) converges.

Proof. (⇒): Since
∑

w:ai
a→aj

|κ(w)| converges, it also converges absolutely, so the order of
summation does not matter. Therefore, it can be rearranged into:∑

w:ai
a→aj

|κ(w)| =
∑
ℓ

∑
w:ai

a,ℓ→aj

|κ(w)| =
∑
ℓ

Āℓ(a).

Therefore the RHS converges.
(⇐): It is sufficient to show that

∑
w:ai

a→aj
|κ(w)| converges for a particular ordering of walks.

But
∑

ℓ Ā
ℓ(a) corresponds to one such ordering and it converges, hence by a similar argument

to that above,
∑

w:ai
a→aj

|κ(w)| converges as well.

Next, we unpack τj(a) in terms of walks in the graph. Remember that τj(a) is the weight
given to sample observation f(aj) for aj ∈ a in the agent’s posterior. We start with τj(a;a)
for some a ∈ A: the weight given to f(aj) in the expected value E[f(a) | a, f(a)]. Letting
pij denote the (i, j)th entry of Σ−1(a) and a ∈ A such that a ̸= aj :
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τj(a;a) = σ(a, a1)p1j + . . .+ σ(a, an)pnj (4)
= σ(a, a1)(a1

a→ aj) + . . .+ σ(a, an)(an
a→ aj)

=
∑
ai∈a

σ(a, ai)(ai
a→ aj)

=
∑
ai∈a

σ(a, ai)

 ∞∑
ℓ=0

∑
w:ai

ℓ,a→aj

(−1)ℓκ(w)


=

∞∑
ℓ=1

∑
w:a

ℓ,a→aj

(−1)ℓ−1κ(w)

The last line corresponds to all walks from a ∈ A to aj ∈ a such that the walk traverses only
nodes in a from the second node and after. A walk of length ℓ has weight (−1)ℓ−1 rather
than (−1)ℓ.

Lemma H.3 (Graph representation of τ(a)). Fix a = (a1, . . . , an). The weight τj(a) given
to observation f(aj) for j = 1, . . . , n corresponds to the expected alternating walk sum from
node a drawn randomly according to density ω : A → [0, 1] to node aj ∈ a such that in all
walks from a to aj all nodes except possibly the first one are in a.

Proof. By the definition of τj(a) and the expression for τj(a;a),

τj(a) =

∫
A
τj(a;a)ω(a) da =

∫
A

 ∞∑
ℓ=1

∑
w:a

ℓ,a→aj

(−1)ℓ−1κ(w)

ω(a) da := −
∫
A
(a

a→ aj)ω(a) da

That is, fixing a sample a: (i) a random subgraph G′ := {a} ∪ a is drawn, (ii) we compute
the expected sum of walks from a to aj that only traverse sample nodes and obtain τj(a) as
above.

a

a1

a2

a3

: : :

Figure 6: Construction in lemma H.3. Sample nodes a = (a1, a2, a3) are shown in yellow, and randomly
drawn node a in grey.

Because the attribute space is infinite, if ω has an interval support the randomly drawn
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starting node a in lemma H.3 is almost surely not in a. Therefore, τj(a) quantifies the
distance in the graph from out-of-sample nodes to each node in sample a. Figure 6 depicts
the construction in lemma H.3.

Proof for theorem 6.1. (i) The posterior variance ψ2(a) can be rewritten as

ψ2(a) =
∑
ai∈a

∑
aj∈a

τi(a)τj(a)σ(ai, aj)

=
∑
ai∈a

∑
aj∈a

(
−
∫
A
(a′

a→ ai)ω(a
′) da′

)(
−
∫
A
(a′′

a→ aj)ω(a
′′) da′′

)
σ(ai, aj)

=
∑
ai∈a

∑
aj∈a

Ea′

[
a′

a→ ai

]
σ(ai, aj)Ea′′

[
aj

a→ a′′
]

=

∫
A

∫
A

(
a′

a→ a′′
)
ω(a′)ω(a′′) da′ da′′

= E(a,a′)

[
a′

a→ a′′
]
= γ(a),

where the second equality follows from lemma H.3, the third uses the notation for
expected walk sums, the fourth takes the expectation over the first and last node of
each walk in the walk sum outside the summation, and the last line applies Definition
4.

(ii) If G is k-walk-summable, then it is a-walk-summable for any k-sample a. Hence, by
part (i) and theorem 3.1, any single-player sample attains the highest sample centrality.

Remark H.1 (Finite A). A natural question is how sample centrality would simplify if the
total number of attribute-nodes is finite. If A is finite, the randomly drawn nodes a, a′ in
Definition 4 are (generically) sample nodes with positive probability. Our interpretation of
τj(a) has to be modified accordingly. Without loss, let A := {a1, . . . , aN} and consider sample
a := (a1, a2). By an argument similar to that of lemma H.3,

τ1(a) = ω(a1) + ω(a3)(a3
a→ a1) + . . .+ ω(aN )(aN

a→ a1)

= Pr(a1)(a1
ℓ=0→ a1) + Pr(a3)(a3

a→ a1) + . . .+ Pr(aN )(aN
a→ a1);

τ2(a) = ω(a2) + ω(a3)(a3
a→ a2) + . . .+ ω(aN )(aN

a→ a2)

= Pr(a2)(a2
ℓ=0→ a2) + Pr(a3)(a3

a→ a2) + . . .+ Pr(aN )(aN
a→ a2).

sample centrality is defined as in Definition 4, with the caveat that (i) if (a1, a1) or (a2, a2) is
drawn, only the zero-length walk of weight 1 is considered; (ii) if (a1, a2) or (a2, a1) is drawn,
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only the path π = (a1, a2) (with κ(π) = σ(a1, a2)) or π = (a2, a1) (with κ(π) = σ(a2, a1)) is
considered respectively.

H.3 Path-summability

If walk-summability fails for at least some a ∈ Ak, the sample precision matrix Σ−1(a) is
no longer interpretable in terms of walks traversing the subgraph of the sample as argued in
section H.1. This is problematic for the definition of sample centrality proposed in definition
4. The following example illustrates this for samples of size two.

Example H.2 (Failure of walk-summability for small samples). Any G is 1-walk-summable
but not 2-walk-summable. Walk-summability for n = 1 is straightforward as for any a = (a1),
only a zero-length walk within a exists. For n = 2, the largest eigenvalue of Ā(a) for any
a = (a1, a2) is 1 + |σ(a1, a2)| ≥ 1. Hence, ρ(a) ≥ 1. By lemma H.1 walk-summability fails.

To circumvent this issue, we turn to an alternative interpretation of the precision matrix
in terms of path sums following results developed in Giscard et al. (2016). The path-sum
formulation is derived from a fundamental algebraic property of the set of all walks on a
weighted graph: any walk in this graph factorizes uniquely into products of paths and cycles
(as defined in section H.1).8

Lemma H.4 provides a recursive expression for each entry in Σ−1(a) in terms of finite
alternating sums of paths and cycles. In the following construction, each node in G is endowed
with an additional self-loop of weight σ(a, a) normalized to unity. For a given a, let Ga be
the subgraph restricted to it. Let Ga\S denote the subgraph of Ga after deleting nodes in
S ⊂ a and all adjacent edges. Also, ΠGa,aiaj

and ΓGa,aiaj
denote respectively the set of all

paths and cycles in Ga from ai to aj for i, j ≤ k. Let ℓ(·) denote the length of a path/cycle.
For any γ ∈ Γajaj

, γ = (aj , γ2, . . . , γℓ(γ), aj), and for π ∈ Πaiaj
π = (ai, π2, . . . , πℓ(π), aj).

Lemma H.4 (Path-sum formulation, Giscard et al. (2016)). Fix sample a = (a1, . . . , ak)

and let Σ−1(a) be its positive definite precision matrix. The entries of the precision matrix
Σ−1(a) are given by the recursive summation over paths and cycles:

Σ−1
aiaj

=
∑

π∈ΠGa,aiaj

(−1)ℓ(π)
ℓ(π)+1∏
m=1

{(
ΣGa\aj,π2,...,πm−1

)−1

πmπm

σ(πm, πm+1)

}
Σ−1
ajaj

, (5)

Σ−1
ajaj

=

 ∑
γ∈Γajaj

(−1)ℓ(γ)+1σ(aj , γℓ(γ))

ℓ(γ)∏
m=2

{(
ΣGa\aj,γ2,...,γm−1

)−1

γmγm

σ(γm, γm+1)

}−1

.

(6)
8This property holds for both walk-summable and non-walk summable graphs.

21



Proof of lemma H.4. The result directly follows from theorem 2 in Giscard et al. (2016), by
replacing J with Σ(a).

Each summation in lemma H.4 has finitely many terms because there are only finitely
many paths and cycles in a finite graph Ga. Note the recursive structure of this formulation:
the diagonal terms of the precision matrix are obtained by repeatedly applying (6) and this
recursion ends in finite time. Hence, any diagonal term of the precision matrix is expressed
in terms of products of cycles in subgraphs of Ga. Equation (5) uses equation (6) to obtain
the off-diagonal terms of the sample precision matrix: they combine paths and cycles in
subgraphs of Ga. This path formulation holds both when G is a-walk-summable and when it
is not.

Example H.3. Following up on the observation made in example H.2, let k = 2 and consider
the sample subgraph in Figure 7. We compute the entries of the sample precision matrix using
equations (5) and (6). First, note that there are two cycles from a1 to itself: γ = (a1, a1)

σ(a1; a2)
a1 a2

σ(a1; a1) = 1 σ(a2; a2) = 1

Figure 7: The subgraph for sample a = (a1, a2).

and γ′ = (a1, a2, a1). Therefore,

p11 =

(−1)2σ(a1, a1)︸ ︷︷ ︸
cycle γ

+(−1)3σ(a1, a2)
(
ΣGa\a1

)−1

22
σ(a2, a1)︸ ︷︷ ︸

cycle γ′


−1

=

(
σ(a1, a1)− σ(a1, a2)

2 1

σ(a2, a2)

)−1

=
σ(a2, a2)

σ(a1, a1)σ(a2, a2)− σ(a1, a2)2
=

1

1− σ(a1, a2)2
.

By similar reasoning, we obtain p22, which is also a combination of two cycles. Next, there
is only one path from a1 to a2: π = (a1, a2). Hence,

p12 = (−1)2
(
ΣGa\a1

)−1

22︸ ︷︷ ︸
self-loop γ′′=(a2,a2)

σ(a1, a2)p22 =
1

σ(a2, a2)
σ(a1, a2)

σ(a2, a2)

σ(a1, a1)σ(a2, a2)− σ(a1, a2)2

=
σ(a1, a2)

1− σ(a1, a2)2
.

That is, the sign-alternating path product (−1)2σ(a1, a2) is weighted by p22/σ(a2, a2).
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Sample centrality redefined. The (i, j)th entry of the precision matrix for the sample is
now expressed as the alternating sum of the path products of the form (−1)ℓ(π)κ(π) for all
paths π between ai ∈ a and aj ∈ a, where each path is weighted as in lemma H.4. Therefore,
τj(a) should be reinterpreted as the expected alternating path sum from a randomly drawn
a ∈ A to aj ∈ a, where all nodes in the path from the second node are sample nodes.
Correspondingly, centrality γ is reinterpreted as the expected alternating path sum from a
randomly drawn attribute-node a ∈ A to another randomly drawn attribute a′ ∈ A.

H.4 Relation to other centrality measures

Sample centrality departs from most existing centrality measures insofar as it is defined
over subsets of nodes rather than only single nodes. Notable exceptions are Everett and
Borgatti (1999) (who introduce knotty centrality), Shanahan and Wildie (2012) (who extend
degree / closeness / betweenness centrality to group counterparts), and Prummer (2019)
(who extends weighted degree centrality to subsets of nodes in a model of media targeting).
In particular, sample centrality is a striking amalgam of betweenness centrality and Katz-
Bonacich centrality. We compare it to each in turn.

Relation to betweenness measures. Betweenness centrality captures the extent to which
a certain node lies on the paths between any two other nodes. Although the original be-
tweenness measure took into account only geodesic paths between any two nodes (Freeman
(1977)), subsequent variations extended it to weighted graphs and non-geodesic paths (flow
betweenness in Freeman, Borgatti and White (1991)), random walks from a fixed source to
a fixed sink (random-walk betweenness in Newman (2005)), and betweenness of subsets of
nodes (group betweenness in Everett and Borgatti (1999)). In the spirit of betweenness mea-
sures, sample centrality captures how strongly a sample of nodes connects any two nodes in
the graph – yet with some crucial differences.

First, for k = 1, that is, for a singleton sample a = (a1), sample centrality looks at the
shortest path of the form a→ a1 → a′, but weighs this path by ω(a)ω(a′) rather than by the
inverse of the total number of geodesic paths from a to a′ as betweenness centrality would.
This weighting of the pair (a, a′) generalizes to k ≥ 1 as well.

Second, for k ≥ 1 sample centrality considers inference channels of a similar form a →
sample → a′, but these are walks rather than paths. The walks are constrained to travel

only within the sample before ending at a′. This stands in contrast to the construction in
Everett and Borgatti (1999) where group betweenness counts only the share of geodesic paths
from a to a′ that go through sample nodes.

Relation to Bonacich centrality. Sample centrality features alternating walk sums of any
length between any two sample nodes, because the covariance of the sample is Σ−1(a) =

(I+A(a))−1. In the case in which the graph is a-walk-summable, this is reminiscent of Katz-
Bonacich centrality, which counts the sum of walks of any length emanating from a given
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node (Katz (1953), Bonacich (1987)). Katz-Bonacich centrality discounts walks of length ℓ

by βℓ, where β ∈ (0, 1) is the discount factor. In contrast, sample centrality discounts walks
of length ℓ by (−1)ℓ.9

More importantly, the weight τj(a;a) that scales sample observation f(aj) in the ex-
pectation of f(a) (equation (4)) can be interpreted in Katz-Bonacich-like terms. The Katz-
Bonacich centrality of node aj ∈ a within the sample subgraph Ga = (a, Ea) is∑

ai∈a
(ai

a→ aj),

whereas for a given out-of-sample node a,

τj(a;a) =
∑
ai∈a

σ(a, ai)(ai
a→ aj).

So τj(a;a) captures a modified notion of Katz-Bonacich centrality of sample node aj : walks
from aj to other sample nodes ai ∈ a are weighted by σ(a, ai) rather than equally. If σ(a, ai)
is the same for any ai ∈ a, τj(a;a) simplifies to Katz-Bonacich centrality. Therefore, τj(a) is
the modified Katz-Bonacich centrality of node aj ∈ a averaged out across all possible starting
nodes a ∈ A.
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